初三數(shù)學(xué)的知識點總結(jié)
在年少學(xué)習(xí)的日子里,相信大家一定都接觸過知識點吧!知識點有時候特指教科書上或考試的知識。為了幫助大家掌握重要知識點,下面是小編幫大家整理的初三數(shù)學(xué)的知識點總結(jié),希望能夠幫助到大家。
初三數(shù)學(xué)的知識點總結(jié)1
1、圖形的相似
相似多邊形的對應(yīng)邊的比值相等,對應(yīng)角相等;
兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應(yīng)邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么兩個三角形相似。
3相似三角形的'周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
初三數(shù)學(xué)的知識點總結(jié)2
1、弧長公式
n°的圓心角所對的弧長l的計算公式為L=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長.
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長,r是圓錐的`地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經(jīng)過切點的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.
一、選擇題
1.(2014o珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點:圓柱的計算.
分析:圓柱的側(cè)面積=底面周長×高,把相應(yīng)數(shù)值代入即可求解.
解答:解:圓柱的側(cè)面積=2π×3×4=24π.
故選A.
點評:本題考查了圓柱的計算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計算方法.
2.(2014o廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點E,且AC=2,AE=,CE=1.則弧BD的長是()
A.B.C.D.
考點:垂徑定理;勾股定理;勾股定理的逆定理;弧長的計算.
分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長,再根據(jù)弧長公式即可得出結(jié)論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數(shù)學(xué)的知識點總結(jié)3
不等式的概念
1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。
2、不等式的解集:對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。
3、對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。
4、求不等式的解集的`過程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
不等式基本性質(zhì)
1、不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個正數(shù),不等號的方向不變。
3、不等式兩邊都乘以或除以同一個負數(shù),不等號的方向改變。
4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數(shù)化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個不等式的解集。
2利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
初三數(shù)學(xué)的知識點總結(jié)4
。ㄈ切沃形痪的定理)
三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。
。ㄆ叫兴倪呅蔚男再|(zhì))
、倨叫兴倪呅蔚膶呄嗟龋
、谄叫兴倪呅蔚膶窍嗟;
③平行四邊形的對角線互相平分。
(矩形的性質(zhì))
、倬匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
、诰匦蔚乃膫角都是直角;
、劬匦蔚膶蔷相等。
正方形的判定與性質(zhì)
1、判定方法:
1鄰邊相等的矩形;
2鄰邊垂直的菱形;
3對角線垂直的矩形;
4對角線相等的菱形;
2、性質(zhì):
1邊:四邊相等,對邊平行;
2角:四個角都相等都是直角,鄰角互補;
3對角線互相平分、垂直、相等,且每長對角線平分一組內(nèi)角。
等腰三角形的判定定理
。ǖ妊切蔚呐卸ǚ椒ǎ
1、有兩條邊相等的三角形是等腰三角形。
2、判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形簡稱:等角對等邊。
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,學(xué)習(xí)方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的.點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
標準差與方差
極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。
計算器——求標準差與方差的一般步驟:
1、打開計算器,按“ON”鍵,按“MODE”“2”進入統(tǒng)計SD狀態(tài)。
2、在開始數(shù)據(jù)輸入之前,請務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計存儲器。
3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時,還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。
4、當所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數(shù)據(jù)的標準差;
5、標準差的平方就是方差。
初三數(shù)學(xué)的知識點總結(jié)5
單項式與多項式
僅含有一些數(shù)和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數(shù)或字母也是單項式。
單項式中的數(shù)字因數(shù)叫做這個單項式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。
當一個單項式的系數(shù)是1或—1時,“1”通常省略不寫。
一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
如果在幾個單項式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數(shù)都是同類項。
1、多項式
有有限個單項式的代數(shù)和組成的式子,叫做多項式。
多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數(shù)項。
單項式可以看作是多項式的特例
把同類單項式的系數(shù)相加或相減,而單項式中的字母的乘方指數(shù)不變。
在多項式中,所含的不同未知數(shù)的個數(shù),稱做這個多項式的元數(shù)經(jīng)過合并同類項后,多項式所含單項式的個數(shù),稱為這個多項式的項數(shù)所含個單項式中次項的.次數(shù),就稱為這個多項式的次數(shù)。
2、多項式的值
任何一個多項式,就是一個用加、減、乘、乘方運算把已知數(shù)和未知數(shù)連接起來的式子。
3、多項式的恒等
對于兩個一元多項式fx、gx來說,當未知數(shù)x同取任一個數(shù)值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恒等的記為fx==gx,或簡記為fx=gx。
性質(zhì)1如果fx==gx,那么,對于任一個數(shù)值a,都有fa=ga。
性質(zhì)2如果fx==gx,那么,這兩個多項式的個同類項系數(shù)就一定對應(yīng)相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等于0的未知數(shù)x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個因式。
3、多項式的乘法
多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差。
初三數(shù)學(xué)的知識點總結(jié)6
二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
(1)若這個條件不成立,則不是二次根式;
。2)是一個重要的非負數(shù),即; ≥0。
2、重要公式:
3、積的算術(shù)平方根:
積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
(1)利用近似值比大;
(2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大;
(3)分別平方,然后比大小。
6、商的算術(shù)平方根:,
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡二次根式:
。1)滿足下列兩個條件的二次根式,叫做最簡二次根式,
、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式,
、诒婚_方數(shù)中不含能開的盡的因數(shù)或因式;
。2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;
。3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;
。4)二次根式計算的最后結(jié)果必須化為最簡二次根式。
9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。
10、二次根式的混合運算:
。1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運算律在二次根式的混合運算中都適用;
(2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等。
一元二次方程
1、一元二次方程的一般形式:
a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時,多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的`代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用范圍較。还椒m然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。
3。一元二次方程根的判別式:當ax2+bx+c=0
。╝≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:
Δ>0 <=>有兩個不等的實根;
Δ=0 <=>有兩個相等的實根;Δ<0 <=>無實根;
4。平均增長率問題————————應(yīng)用題的類型題之一(設(shè)增長率為x):
(1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。
。2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。
旋轉(zhuǎn)
1、概念:
把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角
2、旋轉(zhuǎn)的性質(zhì):
。1)旋轉(zhuǎn)前后的兩個圖形是全等形;
(2)兩個對應(yīng)點到旋轉(zhuǎn)中心的距離相等
。3)兩個對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角
3、中心對稱:
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。
這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。
4、中心對稱的性質(zhì):
(1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
。2)關(guān)于中心對稱的兩個圖形是全等圖形。
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
初三數(shù)學(xué)的知識點總結(jié)7
直角三角形的判定方法:
判定1:定義,有一個角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的'直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負倒數(shù),則兩直線互相垂直。那么
判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。
判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
初三數(shù)學(xué)的知識點總結(jié)8
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。
三角形的外心的性質(zhì):
1、三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的'內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;
3、銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
【初三數(shù)學(xué)的知識點總結(jié)】相關(guān)文章:
初三數(shù)學(xué)全套知識點總結(jié)06-30
初三數(shù)學(xué)上冊知識點總結(jié)10-21
初三物理知識點總結(jié)11-03
初三化學(xué)知識點總結(jié)06-28
初三物理知識點總結(jié)集合08-19
初三上冊物理知識點總結(jié)09-08
小學(xué)數(shù)學(xué)計算知識點總結(jié)08-28