- 相關推薦
高一數(shù)學上冊基礎知識點總結
總結是把一定階段內的有關情況分析研究,做出有指導性結論的書面材料,它能夠給人努力工作的動力,我想我們需要寫一份總結了吧。我們該怎么寫總結呢?下面是小編為大家整理的高一數(shù)學上冊基礎知識點總結,歡迎閱讀,希望大家能夠喜歡。
一、集合及其表示
1、集合的含義:
“集合”這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的“全體集合”。數(shù)學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+
整數(shù)集Z有理數(shù)集Q實數(shù)集R
集合的表示方法:列舉法與描述法。
、倭信e法:{a,b,c……}
、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜怼H鐊x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
、壅Z言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調:描述法表示集合應注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。
3、集合的三個特性
。1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質必須明確,不允許有模棱兩可、含混不清的。情況。
集合的含義
集合的中元素的三個特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集NxN+整數(shù)集Z有理數(shù)集Q實數(shù)集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
對數(shù)函數(shù)
對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
右圖給出對于不同大小a所表示的函數(shù)圖形:
可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關于直線y=x的對稱圖形,因為它們互為反函數(shù)。
。1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
。2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
。3)函數(shù)總是通過(1,0)這點。
。4)a大于1時,為單調遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調遞減函數(shù),并且下凹。
。5)顯然對數(shù)函數(shù)。
1、函數(shù)零點的定義
(1)對于函數(shù))(xfy,我們把方程0)(xf的實數(shù)根叫做函數(shù))(xfy)的零點。
。2)方程0)(xf有實根函數(shù)(yfx)的圖像與x軸有交點函數(shù)(yfx)有零點。因此判斷一個函數(shù)是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數(shù)根,有幾個實數(shù)根。函數(shù)零點的求法:解方程0)(xf,所得實數(shù)根就是(fx)的零點(3)變號零點與不變號零點
、偃艉瘮(shù)(fx)在零點0x左右兩側的函數(shù)值異號,則稱該零點為函數(shù)(fx)的變號零點。②若函數(shù)(fx)在零點0x左右兩側的函數(shù)值同號,則稱該零點為函數(shù)(fx)的不變號零點。
、廴艉瘮(shù)(fx)在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0
2、函數(shù)零點的判定
(1)零點存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有(fa)(fb),那么,函數(shù)(xfy)在區(qū)間,ab內有零點,即存在,(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。
。2)函數(shù))(xfy零點個數(shù)(或方程0)(xf實數(shù)根的個數(shù))確定方法
①代數(shù)法:函數(shù))(xfy的零點0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點。
。3)零點個數(shù)確定
0)(xfy有2個零點0)(xf有兩個不等實根;0)(xfy有1個零點0)(xf有兩個相等實根;0)(xfy無零點0)(xf無實根;對于二次函數(shù)在區(qū)間,ab上的零點個數(shù),要結合圖像進行確定。
3、二分法
(1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且(fa)(fb)的函數(shù)(yfx),通過不斷地把函數(shù)(yfx)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步驟:
、俅_定區(qū)間[,]ab,驗證(fa)(fb)給定精確度e;
、谇髤^(qū)間(,)ab的中點c;③計算(fc);
(ⅰ)若(fc),則c就是函數(shù)的零點;
。á)若(fa)(fc),則令bc(此時零點0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時零點0(,)xcb);
、芘袛嗍欠襁_到精確度e,即ab,則得到零點近似值為a(或b);否則重復②至④步。
集合間的基本關系
1、子集,A包含于B,記為:,有兩種可能
(1)A是B的一部分,
(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之:集合A不包含于集合B,記作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關系可以表示為,B=C。A是C的子集,同時A也是C的真子集。
2、真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。
例:集合共有個子集。(13年高考第4題,簡單)
練習:A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。
解析:
集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。
集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。
此處這么羅嗦主要是為了讓同學們注意寫的順序,數(shù)學就是要講究嚴謹性和邏輯性的。一定要養(yǎng)成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學數(shù)學也沒什么必要了。
一、函數(shù)模型及其應用
本節(jié)主要包括函數(shù)的模型、函數(shù)的應用等知識點。主要是理解函數(shù)解應用題的一般步驟靈活利用函數(shù)解答實際應用題。
1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。
2、用函數(shù)解應用題的基本步驟是:
。1)閱讀并且理解題意。(關鍵是數(shù)據、字母的實際意義);
。2)設量建模;
。3)求解函數(shù)模型;
。4)簡要回答實際問題。
常見考法:
本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復雜的函數(shù)的最值等問題,屬于拔高題,難度較大。
誤區(qū)提醒:
1、求解應用性問題時,不僅要考慮函數(shù)本身的定義域,還要結合實際問題理解自變量的取值范圍。
2、求解應用性問題時,首先要弄清題意,分清條件和結論,抓住關鍵詞和量,理順數(shù)量關系,然后將文字語言轉化成數(shù)學語言,建立相應的數(shù)學模型。
【典型例題】
例1:
。1)某種儲蓄的月利率是0.36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關系式,并計算5個月后的本息和(不計復利)。
。2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2.25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0.36x,當x=5時,y=101.8,∴5個月后的本息和為101.8元。
例2:
某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2(注:利潤與投資單位是萬元)
。1)分別將A,B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式。
。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。
集合
集合具有某種特定性質的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學元素。例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數(shù)學名詞。一組具有某種共同性質的數(shù)學元素:有理數(shù)的~。
3、口號等等。集合在數(shù)學概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學的基本概念,專門研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年—1918年,德國數(shù)學家先驅,是集合論的,目前集合論的基本思想已經滲透到現(xiàn)代數(shù)學的所有領域。
集合,在數(shù)學上是一個基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合
集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
元素與集合的關系
元素與集合的關系有“屬于”與“不屬于”兩種。
集合與集合之間的關系
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹侨魏畏强占恼孀蛹。任何集合是它本身的子集。子集,真子集都具有傳遞性!赫f明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集!
集合的幾種運算法則
并集:以屬于A或屬于B的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個。結果是3,5,7每項減集合
1再相乘。48個。對稱差集:設A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個正整數(shù)n,使得集合A與N_n一一對應,那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”。補集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術當中,常常把CuA寫成~A。
集合元素的性質
1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個子高的同學”“很小的數(shù)”都不能構成集合。這個性質主要用于判斷一個集合是否能形成集合。
2.獨立性:集合中的元素的個數(shù)、集合本身的個數(shù)必須為自然數(shù)。
3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同于{1,2};ギ愋允辜现械脑厥菦]有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。
4.無序性:{a,b,c}{c,b,a}是同一個集合。
5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x
基本初等函數(shù)有哪些
基本初等函數(shù)包括以下幾種:
(1)常數(shù)函數(shù)y = c( c為常數(shù))
(2)冪函數(shù)y = x^a( a為常數(shù))
(3)指數(shù)函數(shù)y = a^x(a>0, a≠1)
(4)對數(shù)函數(shù)y =log(a) x(a>0, a≠1,真數(shù)x>0)
(5)三角函數(shù)以及反三角函數(shù)(如正弦函數(shù):y =sinx反正弦函數(shù):y = arcsin x等)
基本初等函數(shù)性質是什么
冪函數(shù)
形如y=x^a的函數(shù),式中a為實常數(shù)。
指數(shù)函數(shù)
形如y=a^x的函數(shù),式中a為不等于1的正常數(shù)。
對數(shù)函數(shù)
指數(shù)函數(shù)的反函數(shù),記作y=loga a x,式中a為不等于1的正常數(shù)。指數(shù)函數(shù)與對數(shù)函數(shù)之間成立關系式,loga ax=x。
三角函數(shù)
即正弦函數(shù)y=sinx,余弦函數(shù)y=cosx,正切函數(shù)y=tanx,余切函數(shù)y=cotx,正割函數(shù)y=secx,余割函數(shù)y=cscx(見三角學)。
反三角函數(shù)
三角函數(shù)的反函數(shù)——反正弦函數(shù)y = arc sinx,反余弦函數(shù)y=arc cosx (-1≤x≤1,初等函數(shù)0≤y≤π),反正切函數(shù)y=arc tanx,反余切函數(shù)y = arc cotx(-∞ 學習數(shù)學小竅門 建立數(shù)學糾錯本。 把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。 限時訓練。 可以找一組題(比如10道選擇題),爭取限定一個時間完成;也可以找1道大題,限時完成。這主要是創(chuàng)設一種考試情境,檢驗自己在緊張狀態(tài)下的思維水平。 調整心態(tài),正確對待考試。 首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。 數(shù)學函數(shù)的值域與最值知識點 1、函數(shù)的值域取決于定義域和對應法則,不論采用何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下: (1)直接法:亦稱觀察法,對于結構較為簡單的函數(shù),可由函數(shù)的解析式應用不等式的性質,直接觀察得出函數(shù)的值域. (2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元. (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得. (4)配方法:對于二次函數(shù)或二次函數(shù)有關的函數(shù)的值域問題可考慮用配方法. (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧. (6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式. (7)利用函數(shù)的單調性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數(shù)的值域. (8)數(shù)形結合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結合求函數(shù)的值域. 2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系 求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異. 如函數(shù)的值域是(0,16],最大值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域對函數(shù)的值域或最值的影響. 3、函數(shù)的最值在實際問題中的應用 函數(shù)的最值的應用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值. 立體幾何初步 (1)棱柱: 定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱 幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。 (2)棱錐 定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體 分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等 表示:用各頂點字母,如五棱錐 幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。 。3)棱臺: 定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分 分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等 表示:用各頂點字母,如五棱臺 幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點 。4)圓柱: 定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體 幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。 (5)圓錐: 定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體 幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。 。6)圓臺: 定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。 。7)球體: 定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。 【高一數(shù)學上冊基礎知識點總結】相關文章: 高一的數(shù)學知識點總結04-25 初二數(shù)學基礎知識點總結大全范文10-12 高一數(shù)學知識點總結11-28 高一數(shù)學知識點總結09-30 高一數(shù)學每章知識點總結04-25 高一必修數(shù)學知識點總結04-27 初三數(shù)學上冊知識點總結12-20 2021高一數(shù)學知識點總結09-30