一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

五年級《解方程》的教學(xué)反思

時間:2023-05-17 23:26:09 王娟 教學(xué)反思 我要投稿

五年級《解方程》的教學(xué)反思(精選10篇)

  在社會一步步向前發(fā)展的今天,我們要有很強的課堂教學(xué)能力,反思過去,是為了以后。那么優(yōu)秀的反思是什么樣的呢?下面是小編幫大家整理的五年級《解方程》的教學(xué)反思,歡迎大家借鑒與參考,希望對大家有所幫助。

五年級《解方程》的教學(xué)反思(精選10篇)

  五年級《解方程》的教學(xué)反思 篇1

  本節(jié)課的教學(xué)重點和難點是:

  理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點和難點,因此我進行了大膽的嘗試,在講解方程的解時,新課程解方程教學(xué)與以往的最大不同就是,不是利用加減乘除各部分間的關(guān)系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。教學(xué)中我先利用演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用演示x+3個方塊=9個方塊,提問:“如果要稱出x有多少塊,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當(dāng)于6個方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學(xué)生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?

  學(xué)生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調(diào)了一遍,我們的目標(biāo)是求一個x的多少,所以要把多余的3減去。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的'數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。 另外我還要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。在做練習(xí)時我發(fā)現(xiàn)大部分的學(xué)生在解方程的時候,還是運用了加、減法各部分間的關(guān)系來求出方程中的未知數(shù),只有個別學(xué)生懂得運用等式的性質(zhì)來求出方程中的未知數(shù)。在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學(xué)生說出采用各自不同的方法求解方程的過程叫解方程,使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。

  五年級《解方程》的教學(xué)反思 篇2

  《解方程》這部分內(nèi)容,是數(shù)與代數(shù)領(lǐng)域中的一個重要內(nèi)容,是“代數(shù)”教學(xué)的起始單元,對于滲透與發(fā)展學(xué)生的代數(shù)思想有著極其重要的作用。

  在開課時,通過復(fù)習(xí)哪些是方程,鞏固方程的含義,為后面教學(xué)作鋪墊。

  教學(xué)時,我讓學(xué)生自己說出推想過程,一邊板書,一邊指出解題的想法,然后著重講解檢驗的.方法及書寫格式,并在后面的鞏固練習(xí)當(dāng)中加入口答檢驗,根據(jù)課本上的“注意”強調(diào)說明雖然不要求每題都寫出檢驗,但都要口算進行檢驗,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  在出示概念時,先讓學(xué)生自學(xué)了概念。自學(xué)完概念后,應(yīng)讓學(xué)生對兩概念講講自己的理解,自己勾畫出重點字,然后才是教師對概念重點的強調(diào),這樣更能區(qū)分兩概念不同的含義,對難點的突破也是一個很好的方法,可以讓學(xué)生將易混易錯的地方,清楚理解后,明確兩概念的區(qū)別,這點在課上忽略了。

  在后面的反饋練習(xí)時,因前面例題的格式講的還不夠明確,所以練習(xí)時有點反復(fù),但在后面的練習(xí)中學(xué)生已完全掌握。鞏固練習(xí)的層次很好,由易到難,對學(xué)生的學(xué)習(xí)有突破,學(xué)生完成的正確率也很高。

  這節(jié)課整體來說我比較滿意,對于細節(jié)上的處理。在今后的教學(xué)中我會更加注意,使教學(xué)更加嚴(yán)謹(jǐn),也會更注意教材的研讀,爭取上一節(jié)完美的好課。

  五年級《解方程》的教學(xué)反思 篇3

  一、引入了天平,理解等式的性質(zhì)。

  新教材的突出之處從直觀的天平入手,天平的兩邊同時加上或減去相同的重量,仍然保持平衡,這樣就引入了等式的性質(zhì)1,利用這個性質(zhì),可以解決a+x=b,或a-x=b的方程,接著又從天平的兩邊同時乘或除以相同的非零的數(shù),天平仍然平衡,可以解決ax=b或x÷a=b的方程。從長遠角度看,學(xué)生經(jīng)過這樣的學(xué)習(xí),對于七年級以后的后續(xù)學(xué)習(xí)減少了障礙,很好地做好了銜接。

  二、兩條腳走路,解決不便的.問題。

  教材中有意避免了形如-x或÷x的方程的出現(xiàn),可是在實際中,出現(xiàn)這種方程是不可避免的,如果出現(xiàn)了,我們教者如何解釋呢?學(xué)生又應(yīng)如何解答呢?當(dāng)然還可以根據(jù)等式的性質(zhì)來進行左右兩邊的化解,使得左邊或右邊變?yōu)樾稳鐇的情況,學(xué)生對于其中的減數(shù)與除數(shù)為未知數(shù)還可以啟發(fā)他運用四則運算的內(nèi)部的關(guān)系來解決。不要怕給了學(xué)生又一種選擇的機會,這樣在用等式的性質(zhì)解決問題不方便時,未嘗不是一種好的方法。

  三、抓住其本質(zhì),簡化方程的過程。

  兩邊同時加上或減去同一個數(shù)的過程,其本質(zhì)是為什么要這么做,當(dāng)學(xué)生經(jīng)過思考發(fā)現(xiàn)這樣的過程就是把方程的一邊變?yōu)橹皇O挛粗獢?shù)的過程,因而可以簡化一些不必要的多余過程,典型的如x+5=20,x+5-5=20+5,讓學(xué)生通過計算體驗這樣的第二步過程實際即為x=20+5,因而可以使方程的解答變得簡便。學(xué)生覺得當(dāng)然還是簡便的過程值得效仿,積極性顯得非常之高。

  四、確保正確率,及時進行檢驗。

  原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學(xué)生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細的檢驗過程之后,然后教給學(xué)生一個簡便的檢驗方法,學(xué)生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。

  同時,在這部分的教學(xué)期間,也有一些問題引發(fā)了個人的一些思考。

  首先是學(xué)習(xí)中如何提高學(xué)生的學(xué)習(xí)規(guī)范性,方程的解答是一種規(guī)范的過程,它有一些固定的格式,例如必須寫“解:”,必須“=”上下對齊,要正確必須進行檢驗等,而這些都必須讓學(xué)生多進行訓(xùn)練,多強化練習(xí),理解各種題型的結(jié)構(gòu)。

  其次是對于特殊方程的解答,如減數(shù)與除數(shù)為未知數(shù)的方程,用兩種方法解決的問題,可能會引起部分的的不理解,會不會與教材主倡導(dǎo)的用等式的性質(zhì)解決問題有矛盾呢

  五年級《解方程》的教學(xué)反思 篇4

  解方程是是數(shù)學(xué)知識里面很關(guān)鍵很重要的一個知識點。,在實際中,擁有方程的解法之后,很多人不會算式解題,但是能用方程解題,足以見得方程可以做到一些算式無法超越的能力。而如今五年級的學(xué)生開始學(xué)習(xí)解方程,作為教師的我更應(yīng)該讓學(xué)生吃透這方程,突破這重難點。

  在教這單元之前,我一直困惑解方程要采用初中的“移項”解題,還是運用書本的“等式性質(zhì)”解題,面對困惑,向老教師請教,原來還有第三種老教材的“四則運算之間的關(guān)系”解題,方法多了,學(xué)生該吸收那種方法呢?困惑,學(xué)生該如何下手,運用“移項”解題,學(xué)生對于這個概念或許不會系統(tǒng)清晰,但是“等式性質(zhì)”解題時,在碰到a-x=b和a÷x=b此類的方程,學(xué)生能如何下手,“四則運算之間的關(guān)系”老教材的方式改變,必有他的理由,能用嗎?困惑!我先了解改革的原因(摘自教學(xué)參考書):新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負遷移就越明顯。

  因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。從這不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。但是從另一方面看出老教材的方法并無錯誤,而且能讓學(xué)生清楚準(zhǔn)確地掌握實際解題,面對題目不會盲目,而采用等式基本性質(zhì)給學(xué)生帶來的是局部的銜接,而存在局部對學(xué)生會更困難,如a-x=b和a÷x=b此類的方程。了解這一信息,我決定采用新老教材一起使用,先從教材中的運用等式基本性質(zhì)教學(xué)孩子會解簡單的方程,以便初中學(xué)習(xí)可以銜接,而初中的“移項”也會順利的接收,但是面對現(xiàn)在五年級的思維和解題的方便性,我再教學(xué)老教材的“四則運算關(guān)系”解放程,至少這樣能讓現(xiàn)在的學(xué)生會解各種題型的方程。在我看來,這樣的教學(xué)書本的知識不丟,方法又可以多種變通。所以我在教學(xué)解方程的時候,給他們灌輸了兩種方法,第一種方法就是課本上的根據(jù)等式的性質(zhì)去解方程,另一種方式就是初中階段的“移項”,在這里的時候,我給初中的“移項”起了一個新的名字:移——變號。引入了這一個方法,學(xué)生解方程的興致有了很大的提高,解方程也變得容易了許多。

  但是在移-變號這種情況下,有出現(xiàn)了21÷x=7,和20-x=3的這樣的'特殊情況,而我則讓他們記住,只要x在后面,就要運用到四則運算“除數(shù)=被除數(shù)÷商”和“減數(shù)=被減數(shù)-差”這兩種情況。通過練習(xí),學(xué)生解方程正確率有了很大的提高,但是與之而來的是,學(xué)生忘了等式的興致,忘了移—變號是怎么來的,而我,則在移-變號的基礎(chǔ)上,再一次的回顧,讓他們明白移-變號的立腳點就是等式的性質(zhì),如此反復(fù),學(xué)生加強了對解方程的認(rèn)識,也更牢固的記住了等式的興致。而通過這一次的上課,我意識到,老師在上課之前,一定要更好的預(yù)設(shè),只有在這樣的情況下,生成的結(jié)果,才不會顧此失彼。而身為老師,一定要好好的研究教材,鉆研透知識點,只有這樣,才能夠給學(xué)生清晰的思路。

  五年級《解方程》的教學(xué)反思 篇5

  教材是利用等式的性質(zhì)來解方程。通過天平游戲,探索等式兩邊都加上(或減去)同一個數(shù),等式仍然成立,等式兩邊都乘一個數(shù)(或除以一個不為0的數(shù)),等式仍然成立的性質(zhì)。利用探索發(fā)現(xiàn)的等式的性質(zhì),解簡單的方程。如求出y+8=10中的未知數(shù)y。教材呈現(xiàn)了兩種思路。一種是學(xué)生直接想“?+8=10”,從而得出答案。另一種是利用等式的性質(zhì)解方程,即“方程的兩邊都減8”的方法。y+8-8=10-8,y=2。這樣解方程,剛開始時,為了學(xué)生理解方便,等號左邊的“+8-8”都要寫出來,會比較麻煩,也容易出錯!稊(shù)學(xué)課程標(biāo)準(zhǔn)》提倡算法多樣化的新理念,激發(fā)了我對解方程這課從不同的`角度來進行解讀和探討,因此,在學(xué)生理解了用等式的性質(zhì)解方程后,我又留給學(xué)生一定的時間和空間,讓學(xué)生獨立思考,發(fā)揮各自的聰明才智,自主探索,找出不同的解題方法。

  學(xué)生經(jīng)歷了獨立思考,掌握的知識才更深刻、更透徹。久而久之,將促使學(xué)生養(yǎng)成獨立思考的習(xí)慣,培養(yǎng)了學(xué)生解決問題的能力。將學(xué)生的方法整理后,我又適時給學(xué)生提供了另外兩種解方程的方法,利用加、減、乘、除法各部分之間的關(guān)系來解方程和通過移項來解方程。

  五年級《解方程》的教學(xué)反思 篇6

  本節(jié)課的內(nèi)容是在學(xué)生學(xué)了等式的性質(zhì)和解形如a+x=b x — a =b ax=bx÷a =b這樣的一般方程基礎(chǔ)上進行教學(xué)的。成功之處:如何解決形如a — x =b a÷x =b這樣的特殊方程,關(guān)鍵是啟發(fā)學(xué)生思考,根據(jù)哪一條等式性質(zhì),怎樣將新的問題轉(zhuǎn)化為已經(jīng)解決的舊的問題。在教學(xué)中,我首先讓學(xué)生試做看看遇到了什么樣的難題,部分學(xué)生發(fā)現(xiàn)20—x=9解:20—x—20=9—20在解決問題的過程中遇到了方程右邊不夠減的情況,方程左邊是“—x”。正當(dāng)學(xué)生無從下手,不知所措的情形下,啟發(fā)學(xué)生當(dāng)我們遇到新問題時怎么解決呢?學(xué)生會想到聯(lián)系前面學(xué)習(xí)的舊知識來解決,那你認(rèn)為應(yīng)該把這樣的減法方程轉(zhuǎn)化為什么運算的方程呢?學(xué)生很容易想到把這樣的減法方程轉(zhuǎn)化為加法方程就可以解決新問題,接著教師再緊跟著啟發(fā)學(xué)生,如何根據(jù)我們學(xué)過的知識進行轉(zhuǎn)化呢?

  通過學(xué)生思考、討論和交流,可以根據(jù)等式的性質(zhì)進行轉(zhuǎn)化,從而得出:20—x=9在解決特殊方程的過程中,學(xué)生有的解:20—x+x=9+x還想到利用加減法之間的關(guān)系來解決,直20=9+x接得出9+x=20也是可以的,肯定學(xué)生的9+x =20思考方法的合理性,但是也要告訴學(xué)生,9+x—9 =20—9這樣的'思考方法到了中學(xué)解決更加復(fù)雜X=11的方程就無能為力了,為了使小學(xué)和中學(xué)的知識能更好的銜接,我們重點應(yīng)用等式的性質(zhì)把特殊方程轉(zhuǎn)化為一般方程,然后依據(jù)一般方程的方法解決問題。不足之處:在練習(xí)中出現(xiàn)個別學(xué)生不注意觀察方程是一般方程還是特殊方程,導(dǎo)致出錯。再教設(shè)計:重點強化特殊方程的特點,讓學(xué)生在解方程的過程中首先要觀察方程的特點,然后采取相應(yīng)的解決問題的方法。

  五年級《解方程》的教學(xué)反思 篇7

  1.認(rèn)知基礎(chǔ)的“頑固性”

  心理學(xué)研究表明,當(dāng)人們熟練地掌握某種法則以后,往往就很難從另一種角度去思考問題,從而也就不容易順利地實現(xiàn)由“過程”向“對象”的轉(zhuǎn)變。在一至四年級,學(xué)生都是根據(jù)四則運算各部分之間的關(guān)系來做計算的,它既是學(xué)生十分熟悉的運算規(guī)律,同時又為新知的學(xué)習(xí)提供了合適的基礎(chǔ)。方程是把已知和未知看作同等的地位,一樣參與運算,從這個角度去看,當(dāng)然也可以運用四則運算各部分之間的關(guān)系來做。而且,四則運算各部分之間的關(guān)系學(xué)生是先入為主、根深蒂固的,具有相對的“頑固性”,甚至在一定程度上會排斥新學(xué)的等式的性質(zhì),導(dǎo)致思維的“過早封閉”。因此,大多數(shù)學(xué)生這樣做也就可以理解了。

  2.兩種方法形式上的相似引發(fā)學(xué)生思維的`惰性

  第一種方法書寫較少,形式簡單。第二種方法從表面看,顯得煩瑣、麻煩,而且方程左邊的“40x÷40”可以直接簡寫成“x”,這樣從表面上看就和第一種方法一樣了。根據(jù)已有的經(jīng)驗已經(jīng)能夠正確地解方程了,何必又多此一舉,再去理解、掌握等式的性質(zhì)呢?學(xué)生形成思維惰性,就不會再去深究思路和觀念的不同,更不會創(chuàng)新解法。

  方程變得順理成章、水到渠成。學(xué)生深刻認(rèn)識到:利用等式的性質(zhì)解方程,看似麻煩,實則簡單,不須思考各部分之間的關(guān)系。這時,教師再適時介紹教材之所以這樣編排是為了中小學(xué)方程解法的銜接,使學(xué)生認(rèn)識到利用等式的性質(zhì)解方程的必要性,觀念得以更新、深化。

  五年級《解方程》的教學(xué)反思 篇8

  解方程這部分教學(xué)內(nèi)容與老教材相比有很大的差異,尤其是在方程的解法上,利用天平平衡的道理解方程,學(xué)生在理解和運用上都有一定的困難,而且本部分教學(xué)很是枯燥無味,于是我加入了探秘的情節(jié),和本節(jié)課完全吻合。下面就我講授的這節(jié)課做一下反思:

  一、本節(jié)課的教學(xué)重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學(xué)環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學(xué)重點和難點服務(wù),因此我進行了大膽的嘗試,在講解方程的解時,給學(xué)生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),它能使方程的左右兩邊相等,不信咱們試一試。”由此引起了學(xué)生的.好奇心,通過練習(xí)讓學(xué)生充分感知“方程的解”的神奇之處。既讓學(xué)生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準(zhǔn)備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學(xué)會了本節(jié)課的知識。對于概念的理解也很扎實。

  二、在練習(xí)題的安排上也做了精心的安排,當(dāng)講授完利用天平平衡的道理解方程后,馬上進行了“填空練習(xí)”,這四個練習(xí)題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的教學(xué)和課后的練習(xí)看,學(xué)生對解方程掌握的還不錯。

  本節(jié)課不足之處在于最后留的時間過少,檢驗的格式?jīng)]有完整的交給孩子們。可內(nèi)心矛盾:檢驗的目的已經(jīng)達到了,必須要重視其格式嗎?

  總體來說,喜歡讓孩子們在快樂中學(xué)到知識,喜歡聽孩子們說:“我還想再寫!

  五年級《解方程》的教學(xué)反思 篇9

  五年級第四單元教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法。在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差等關(guān)系來求出方程中的未知數(shù)。而新教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。

  在教學(xué)前,由于我個人比較偏好于傳統(tǒng)的教學(xué)方法,總覺得用等式的性質(zhì)解方程比較麻煩。為了轉(zhuǎn)變自己的教學(xué)思想,更新教學(xué)觀念,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學(xué)模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的'方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學(xué)生是學(xué)習(xí)的主人”和“教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的這一角度上,為學(xué)生創(chuàng)設(shè)學(xué)習(xí)此課的情境,通過直觀演示,充分給學(xué)生提供小組交流的機會。在教學(xué)的整個過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學(xué)習(xí)活動是那么的有滋有味,進而使我很順利地就完成了本課的教學(xué)任務(wù)。

  五年級《解方程》的教學(xué)反思 篇10

  這次教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法,在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用關(guān)系來求出方程中的未知數(shù)。而北師大版教材則是借用天平游戲使學(xué)生首先感悟“等式”,知道“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,這樣才能從真正意義上很好地揭示方程的意義,進而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。

  原來教學(xué)由于我個人比較偏好于傳統(tǒng)的教學(xué)方法,在教學(xué)的過程中沒有特別強調(diào)“等式”與由等式引申出來的規(guī)律,從而也就影響了學(xué)生沒能很好地理解等式的.性質(zhì),所以大部分的學(xué)生在解方程的時候,還是運用了加、減法各部分間的關(guān)系來計算,只有極個別的學(xué)生懂得運用等式的性質(zhì)來解決問題。在這次實驗教學(xué)的過程中,我深入了解新教材的涵意——方程是一個一個等式,是一個數(shù)學(xué)模型,是抽象的,而天平是一個具體的東西,利用天平這樣的事物原形來揭示等式的性質(zhì),把抽象的解方程的過程用形象化的方式表現(xiàn)出來,使學(xué)生更好的理解解方程的過程是一個等式的恒等變形。并能站在“學(xué)生是學(xué)習(xí)的主人”和“教師是學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的這一角度上,為學(xué)生創(chuàng)設(shè)學(xué)習(xí)此課的情境,提供動手操作、實踐以及小組合作、討論的機會。在教學(xué)的整個過程中,重點突出了“等式”與“等式兩邊都乘同一個數(shù)(或除以同一個不為0的數(shù)),等式仍然成立”這個規(guī)律,不斷對孩子們進行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運用此規(guī)律來解方程。

  盡管如此,仍然存在著許多不足,比如:在驗證猜想時,應(yīng)從一個一個具體的等式抽象到未知的等式,學(xué)生容易接受,而我是直接用抽象的等式驗證的,學(xué)生不太容易接受。還有在解方程時,算理講得不太清楚,學(xué)生在解方程時,有部分學(xué)困生學(xué)起來有困難。

  在今后的教學(xué)中,一定要吃透教材,認(rèn)真鉆研教材,才能上出優(yōu)質(zhì)課。

【五年級《解方程》的教學(xué)反思】相關(guān)文章:

《解方程》教學(xué)反思04-07

數(shù)學(xué)解方程教學(xué)反思04-12

稍復(fù)雜的解方程教學(xué)反思04-28

《 解方程》教案設(shè)計及課后反思04-25

小學(xué)五年級數(shù)學(xué)人教版上冊《解方程》教學(xué)反思(通用18篇)11-16

五年級數(shù)學(xué)解方程教案03-04

解方程2教案04-25

人教版五年級上冊數(shù)學(xué)《解方程》教案03-10

五年級數(shù)學(xué)《解方程》練習(xí)題06-13