《圓周角》教學反思范文(精選9篇)
在不斷進步的社會中,我們要在課堂教學中快速成長,反思過去,是為了以后。那么反思應該怎么寫才合適呢?以下是小編為大家整理的《圓周角》教學反思范文,僅供參考,希望能夠幫助到大家。
《圓周角》教學反思 1
《數(shù)學課程標準》中指出:“在掌握基礎知識的同時,感受數(shù)學的意義”提出了“重視從學生的生活經(jīng)驗和已有的知識中學習數(shù)學和理解數(shù)學”使學生感受到數(shù)學就在我們身邊,感受到數(shù)學的趣味、作用。
在我們的日常生活中,圓周角和圓心角的現(xiàn)象無處不在,對于這兩個概念的體驗尤為重要。反思這節(jié)課,我有以下體會:
1、重視聯(lián)系學生的生活實際,讓學生體驗到生活中處處有數(shù)學。
從觀察名牌汽車的標志入手,還有自行車的車輪等等都是學生在生活中時時能看,處處能見的,通過這些圖形的形象演示,讓學生直觀看到真實的世界中的“圓周角和圓心角”,加強學生的感性認識。
2、用多種感官感受數(shù)學,培養(yǎng)數(shù)學情感。
學生在本課中不是用耳朵聽數(shù)學,而是用眼睛觀察數(shù)學現(xiàn)象,通過數(shù)學教具的演示來理解數(shù)學知識,用數(shù)學知識解釋身邊的數(shù)學現(xiàn)象,在探討、交流、分析中獲得數(shù)學概念,拉近了抽象的'數(shù)學概念與生活實際的距離。
3、重視數(shù)學知識的形成過程,讓學生感受到學習數(shù)學的快樂。
課中引導學生從三種情況進行分析,推導圓周角定理的證明過程。定理學完后,馬上進行適當?shù)木毩暭右造柟蹋寣W生在思考與回答的過程中體會到學習數(shù)學的快樂。
存在的不足:
還可讓學生多一些動手操作的時間,給小老師多一些機會,在操作中加深對“圓周角定理推導過程”的體驗。
《圓周角》教學反思 2
本節(jié)課的重點圓周角概念及圓周角定理難點是圓周角定理的證明中由“一般到特殊”的數(shù)學思想方法和完全歸納法的數(shù)學思想在本節(jié)課的教學中,學生對圓周角的概念這一性質(zhì)較容易掌握,理解起來問題也不大而對圓周角與圓心角的關系理解起來則相對困難,特別是圓心在圓周角內(nèi)部、圓心在圓周角外部這兩種情況,因此在教學過程中利用幾何畫板動態(tài)演示了當圓周角的頂點在圓上運動時,圓心與圓周角的位置關系分類,引導學生對這一知識的觀察探索與理解
本節(jié)課我設計了問題情境——自主探究——拓展應用的課堂教學模式,以問題為主,配合多媒體輔助教學,引導學生進行有效思考在教學過程中,通過問題串、啟發(fā)引導,學生自主探究,創(chuàng)設情境等多種教學方式融為一體,引導學生用分類的眼光看問題,發(fā)現(xiàn)規(guī)律,敢于猜想,理性驗證教學中注重學生的個體差異,讓不同層次的學生充分參與到數(shù)學思維活動中來,充分發(fā)揮學生的主體作用使學生在觀察、實踐、問題轉(zhuǎn)化等數(shù)學活動中充分體驗探索的快樂,發(fā)現(xiàn)新知,發(fā)展能力與此同時,教師通過適時的點撥、精講,使觀察、猜想、實踐、歸納、推理、驗證貫穿于整個學習過程之中另外有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出此外,在知識的應用過程中還引導學生注重前后知識的聯(lián)系,提高學生綜合運用知識的能力,培養(yǎng)學生對數(shù)學的應用意識、創(chuàng)新意識
本節(jié)課利用問題串對于圓周角的定義進行循序漸進的引導,讓學生意識到點的移動導致的角的變化,這是第一個分類情況在了解的'圓周角定義后,引入一條弧所對的圓周角有無數(shù)個而圓心角只有一個,利用實驗測量得出猜想:一條弧所對的圓周角是它所對圓心角的一半。在論證這一結(jié)論時,利用動態(tài)演示讓學生直觀感受了圓心與圓周角的三種位置關系,明確了分類論證本問題的思路,再利用由特殊到一般的“轉(zhuǎn)化”思想,先證明了圓心在圓周角的一邊上的情況,利用這一特殊位置,對另外兩種情況添加適當?shù)妮o助線再加以證明,從而得出圓周角定理。
整個教學過程中能夠循序漸進,步步深入,使學生通過思考、觀察、實驗,多方面感受數(shù)學的學習方式,在學習課本知識的同時,也領會著學習方式的多樣化,思考問題時常用的數(shù)學方法等數(shù)學學習方法。但是仍有不足之處,過于依賴多媒體,對學生較難分析的“圓心在圓周角外部”這種情況講解,可能有部分學生掌握的不夠好,還需點時間鞏固練習。今后還要在黑板與多媒體的應用偏重上多加思考。
《圓周角》教學反思 3
把射門游戲問題抽象為數(shù)學問題,研究圓周角和圓心角的.關系,研究圓周角和圓心角的關系,應該說,學生解決這一問題是有一定難度的,盡管如此,教學時仍應給學生留有時間和空間,讓他們進行思考。
讓學生經(jīng)歷觀察、想象、推理、操作、描述、交流等過程,多種角度直觀體驗數(shù)學模型,而這也正符合本章學習的主要目標。
《圓周角》教學反思 4
本節(jié)課我認為是一節(jié)研究性的課,結(jié)論雖然簡單、易用,但是探索的過程中體現(xiàn)了數(shù)學的.分類思想與化歸思想。如何讓學生自然地理解是這節(jié)課的難點。
最開始,我是計劃通過學生動手作圓周角來體會分類,但是考慮到時間的關系,沒有讓學生動手,盡管在后面對分類思想在本節(jié)課的應用進行了充分的講解,但是對于學生自主探究還是有些欠缺,使學生對“為什么要分類”體會的不是很充分。這是本節(jié)節(jié)課比較遺憾的地方。另外,沒有充分考慮到不同層次學生的需求?戳烁魑焕蠋煹慕ㄗh,我獲益匪淺,在今后上課的時候?qū)Ω鱾環(huán)節(jié)更應充分的考慮。
《圓周角》教學反思 5
本節(jié)課是在圓的基本概念和性質(zhì)以及圓心角的概念和性質(zhì)基礎上,對圓周角定理進行探索。圓周角定理及推論在圓的有關說理、作圖和計算中有著廣泛的應用,也是學習圓的后續(xù)知識的重要預備知識,在教材中起著承上啟下的作用。同時,圓周角定理及推論也是說明線段相等、角相等的重要依據(jù)之一。
本節(jié)課的重點是圓周角的概念和經(jīng)歷探索圓周角定理及推論的過程,難點是合情推理驗證圓周角和圓心角的關系。在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題不大。而對圓周角與圓心角的關系理解起來相對困難,特別是圓心在圓周角內(nèi)部、圓心在圓周角外部這兩種情況,因此在教學過程中我著重引導學生對這部分知識的探索與理解。還有些學生在運用知識解決問題的過程中忽略同弧的問題,在教學時我借用多媒體加以突出。
本節(jié)課,以學生探究為主,配合多媒體輔助教學。在教學過程中,我將問題是教學法、啟發(fā)式教學法、探究式教學法、情景式教學法、互動式教學法等多種教學法融為一體,創(chuàng)設富有挑戰(zhàn)性的問題情境,引導學生用數(shù)學的眼光看問題,發(fā)現(xiàn)規(guī)律,驗證猜想。在教學中,我還注重學生的個體差異,讓不同層次的.學生充分參與到數(shù)學思維活動中來,充分發(fā)揮學生的主體作用。運用適度的激勵,幫助學生認識自我,建立自信,不僅“學會”,而且“會學”、“樂學”。引導學生采用動手實踐、自主探究、合作交流的方式進行學習,使學生在觀察、實踐、問題轉(zhuǎn)化等數(shù)學活動中充分體驗探索的快樂,發(fā)現(xiàn)新知,發(fā)展能力。與此同時,我通過適時的點撥、精講,使觀察、猜想、轉(zhuǎn)化、歸納、實踐、推理、驗證、分類討論貫穿在整個教學觀察之中。
本節(jié)課的不足之處是:
1、由于內(nèi)容較多,節(jié)奏有點快,有部分學生掌握的不夠好,還需時間鞏固練習。
2、教學流程設計的不太理想,如導課環(huán)節(jié)、互動探究環(huán)節(jié)。
《圓周角》教學反思 6
本節(jié)課在知識上主要有兩點:一是圓周角的概念,二是圓周角定理,為了使學生能夠更好的掌握并運用知識,在授課時就需要注重方式方法,要使學生能夠體驗到抽象出概念和定理的過程,參與到課堂活動中,成為課堂上的`真正主人,為此,對本節(jié)課有以下幾點思考:
1、教學上注重學生的數(shù)學核心素養(yǎng)數(shù)學抽象能力,邏輯推理能力的培養(yǎng)。學生對這些雖然沒有明確的概念,但是多年的數(shù)學學習,已經(jīng)對這些數(shù)學核心素養(yǎng)具有了朦朧的感知,也具有了一般的用數(shù)學眼光、數(shù)學思維去分析、去看待事物的潛意識,老師不必明確強調(diào),但要加以引導,將這些數(shù)學思想默默地進行滲透。
2、注重評價。評價是很重要的,學生回答正確時,積極正面的鼓勵會使學生學習熱情更加高漲,對學習也更有信心,逐漸形成良性循環(huán);學生回答出錯時,當然也要評價,也當然是不能批評否定,而應該給予鼓勵與引導。評價方式可多種多樣,除了老師評價之外,還可以學生互評,小組互評。
3、學生學習方式要多樣化。根據(jù)內(nèi)容的難易程度,可以組織學生以獨自學習、對子互幫學習、小組合作學習等多種方式展開,使學生真正成為課堂的主導者,知識的掌握者。
《圓周角》教學反思 7
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解,勾股定理的應用的教學反思(鄭茹)。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。
針對本班學生的`特點,學生知識水平、學習能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復習引入
對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結(jié)數(shù)學思想方法
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學生展示交流結(jié)果,之后教師引導學生書寫板書,教學反思《勾股定理的應用的教學反思(鄭茹)》。整個活動以學生為主體,教師及時的引導和強調(diào)。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構造這一前提條件?在數(shù)學活動中發(fā)展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數(shù)學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數(shù)學的興趣和信心。
三、鞏固練習,熟練新知
通過測量旗桿活動,發(fā)展學生的探究意識,培養(yǎng)學生動手操作的能力,增加學生應用數(shù)學知識解決實際問題的經(jīng)驗和感受。
在教學設計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設計中轉(zhuǎn)接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學生課堂展示的評價方式應體現(xiàn)生評生,師評生,及評價的針對性和及時性。
《圓周角》教學反思 8
本節(jié)課我以學生探究為主,配合多媒體輔助教學、在教學過程中,我注重教學與生活的聯(lián)系,創(chuàng)設富有挑戰(zhàn)性的問題情境,引導學生用數(shù)學的眼光看問題,發(fā)現(xiàn)規(guī)律,驗證猜想、教學中注重學生的個體差異,讓不同層次的`學生充分參與到數(shù)學思維活動中來,充分發(fā)揮學生的主體作用、引導學生采用動手實踐,自主探究,合作交流的學習方法進行學習,使學生在觀察、實踐中充分體驗探索的快樂,發(fā)現(xiàn)新知,發(fā)展能力、
這節(jié)課做的比較好的地方是:
1、教學環(huán)節(jié)設計比較合理,尤其是對圓周角定理證明的處理?紤]到定理的后兩種圖形證明難度大,考試要求低,班級基礎又弱,我采用了留作思考,個別點撥的方法,幫助學困生和中等生跳過這個“障礙",使得教學重難點沒有被沖淡,教學目標比較明確,課時任務順利完成。
2、基本上做到讓學生講。在課堂上學生能說的老師不說,學生說不出來的老師引導著說,學生沒有想到的老師補充著說。
3、小組4人合作使用合理。充分調(diào)動小組合作的積極性和有效性,利用角落的一點地方,進行課堂評價,使學生課堂效率和學習積極性大增。
這節(jié)課還留有很多的遺憾:引入部分的時間過多,使得時間分配不當,學生的練習不夠充分。由于時間把握不好,導致設計的對于每個知識點都應該有一個練習與之對應沒有很好完成,使學生對本節(jié)課的幾個知識點不夠明確,應用會有點生澀。
《圓周角》教學反思 9
本節(jié)課是在圓的基本概念和性質(zhì)以及圓心角概念和性質(zhì)的基礎上,對圓周角的性質(zhì)進行探索,圓周角性質(zhì)在圓的有關說理、作圖、計算中有著廣泛的應用,也是學習圓的后續(xù)知識的重要預備知識,在教材中起著承上啟下的作用。同時,圓周角性質(zhì)也是說明線段相等,角相等的重要依據(jù)之一。
本節(jié)課的重點是圓周角的概念和經(jīng)歷探索圓周角性質(zhì)的.過程,難點是合情推理驗證圓周角與圓心角的關系。在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大。而對圓周角與圓心角的關系理解起來則相對困難,特別是圓心在圓周角內(nèi)部、圓心在圓周角外部這兩種情況,因此在教學過程中要著重引導學生對這一知識的探索與理解。還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出。此外,在知識的應用過程中還應引導學生注重前后知識的聯(lián)系,提高學生綜合運用知識的能力,培養(yǎng)學生對數(shù)學的應用意識、創(chuàng)新意識。
本節(jié)課我設計了問題情境——自主探究——拓展應用的課堂教學模式,以學生探究為主,配合多媒體輔助教學。在教學過程中,教師將問題式教學法,啟發(fā)式教學法,探究式教學法,情境式教學法,互動式教學法等多種教學方法融為一體,注重教學與生活的聯(lián)系,創(chuàng)設富有挑戰(zhàn)性的問題情境,引導學生用數(shù)學的眼光看問題,發(fā)現(xiàn)規(guī)律,驗證猜想。教學中注重學生的個體差異,讓不同層次的學生充分參與
到數(shù)學思維活動中來,充分發(fā)揮學生的主體作用。運用適度的激勵,幫助學生認識自我,建立自信,不僅“學會”,而且“會學”“,樂學”。引導學生采用動手實踐,自主探究,合作交流的學習方法進行學習,使學生在觀察、實踐、問題轉(zhuǎn)化等數(shù)學活動中充分體驗探索的快樂,發(fā)現(xiàn)新知,發(fā)展能力。與此同時,教師通過適時的點撥、精講,使觀察、猜想、實踐、歸納、推理、驗證貫穿于整個學習過程之中。本節(jié)課不足的是,由于內(nèi)容較多,節(jié)奏有點快,可能有部分學生掌握的不夠好,還需點時間鞏固練習。
【《圓周角》教學反思】相關文章:
圓周角教學反思04-20
圓周角數(shù)學教學反思04-29
《3.3圓周角和圓心角的關系》教學反思05-06
數(shù)學教案-圓周角05-02
《圓周角》教案設計04-25
《燕子》教學反思_教學反思05-06
[教學反思]《春》教學反思04-30
[教學反思]《背影》教學反思04-30
頤和園的教學反思教學反思05-04