- 相關(guān)推薦
《指數(shù)函數(shù)》的優(yōu)秀教案(精選7篇)
作為一名人民教師,常常要根據(jù)教學(xué)需要編寫(xiě)教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。教案應(yīng)該怎么寫(xiě)才好呢?下面是小編整理的《指數(shù)函數(shù)》的優(yōu)秀教案,歡迎大家分享。
《指數(shù)函數(shù)》的優(yōu)秀教案 篇1
教學(xué)目標(biāo):
1.進(jìn)一步理解指數(shù)函數(shù)的性質(zhì);
2.能較熟練地運(yùn)用指數(shù)函數(shù)的性質(zhì)解決指數(shù)函數(shù)的平移問(wèn)題;
教學(xué)重點(diǎn):
指數(shù)函數(shù)的性質(zhì)的應(yīng)用;
教學(xué)難點(diǎn):
指數(shù)函數(shù)圖象的平移變換.
教學(xué)過(guò)程:
一、情境創(chuàng)設(shè)
1.復(fù)習(xí)指數(shù)函數(shù)的概念、圖象和性質(zhì)
練習(xí):函數(shù)y=ax(a0且a1)的定義域是_____,值域是______,函數(shù)圖象所過(guò)的定點(diǎn)坐標(biāo)為.若a1,則當(dāng)x0時(shí),y1;而當(dāng)x0時(shí),y1.若00時(shí),y1;而當(dāng)x0時(shí),y1.
2.情境問(wèn)題:指數(shù)函數(shù)的性質(zhì)除了比較大小,還有什么作用呢?我們知道對(duì)任意的a0且a1,函數(shù)y=ax的圖象恒過(guò)(0,1),那么對(duì)任意的a0且a1,函數(shù)y=a2x1的圖象恒過(guò)哪一個(gè)定點(diǎn)呢?
二、數(shù)學(xué)應(yīng)用與建構(gòu)
例1解不等式:
。1);(2);
(3);(4).
小結(jié):解關(guān)于指數(shù)的不等式與判斷幾個(gè)指數(shù)值的大小一樣,是指數(shù)性質(zhì)的運(yùn)用,關(guān)鍵是底數(shù)所在的范圍.
例2說(shuō)明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的.圖象的關(guān)系,并畫(huà)出它們的示意圖:
。1);(2);(3);(4).
小結(jié):指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移y=f(x+k)(當(dāng)k0時(shí),向左平移,反之向右平移),上下平移y=f(x)+h(當(dāng)h0時(shí),向上平移,反之向下平移).
練習(xí):
。1)將函數(shù)f(x)=3x的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,可以得到函數(shù)的圖象.
(2)將函數(shù)f(x)=3x的圖象向右平移2個(gè)單位,再向上平移3個(gè)單位,可以得到函數(shù)的圖象.
。3)將函數(shù)圖象先向左平移2個(gè)單位,再向下平移1個(gè)單位所得函數(shù)的解析式是.
。4)對(duì)任意的a0且a1,函數(shù)y=a2x1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.函數(shù)y=a2x—1的圖象恒過(guò)的定點(diǎn)的坐標(biāo)是.
小結(jié):指數(shù)函數(shù)的定點(diǎn)往往是解決問(wèn)題的突破口!定點(diǎn)與單調(diào)性相結(jié)合,就可以構(gòu)造出函數(shù)的簡(jiǎn)圖,從而許多問(wèn)題就可以找到解決的突破口.
。5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
。6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x—1|的圖象?
小結(jié):函數(shù)圖象的對(duì)稱(chēng)變換規(guī)律.
例3已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且x0時(shí),f(x)=1—2x,試畫(huà)出此函數(shù)的圖象.
例4求函數(shù)的最小值以及取得最小值時(shí)的x值.
小結(jié):復(fù)合函數(shù)常常需要換元來(lái)求解其最值.
練習(xí):
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于;
。2)函數(shù)y=2x的值域?yàn)椋?/p>
(3)設(shè)a0且a1,如果y=a2x+2ax—1在[—1,1]上的最大值為14,求a的值;
(4)當(dāng)x0時(shí),函數(shù)f(x)=(a2—1)x的值總大于1,求實(shí)數(shù)a的取值范圍.
三、小結(jié)
1.指數(shù)函數(shù)的性質(zhì)及應(yīng)用;
2.指數(shù)型函數(shù)的定點(diǎn)問(wèn)題;
3.指數(shù)型函數(shù)的草圖及其變換規(guī)律.
四、作業(yè):
課本P55—6,7.
五、課后探究
。1)函數(shù)f(x)的定義域?yàn)椋?,1),則函數(shù)的定義域?yàn)椤?/p>
(2)對(duì)于任意的x1,x2R,若函數(shù)f(x)=2x,試比較的大小。
《指數(shù)函數(shù)》的優(yōu)秀教案 篇2
教材分析:
“指數(shù)函數(shù)”是在學(xué)生系統(tǒng)地學(xué)習(xí)了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運(yùn)算性質(zhì)的基礎(chǔ)上展開(kāi)研究的.作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應(yīng)用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ).指數(shù)函數(shù)在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀(guān)教育的好素材,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.
學(xué)情分析:
通過(guò)初中階段的學(xué)習(xí)和高中對(duì)函數(shù)、指數(shù)的運(yùn)算等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)生對(duì)函數(shù)已經(jīng)有了一定的認(rèn)識(shí),學(xué)生對(duì)用“描點(diǎn)法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想.另外,學(xué)生對(duì)由特殊到一般再到特殊的數(shù)學(xué)活動(dòng)過(guò)程已有一定的體會(huì).
教學(xué)目標(biāo):
知識(shí)與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺(jué)、靈活地應(yīng)用其性質(zhì)(單調(diào)性、中介值)比較大。
過(guò)程與方法:
(1)體會(huì)從特殊到一般再到特殊的研究問(wèn)題的方法,培養(yǎng)學(xué)生觀(guān)察、歸納、猜想、概括的能力,讓學(xué)生了解數(shù)學(xué)來(lái)源于生活又在生活中有廣泛的應(yīng)用;理解并掌握探求函數(shù)性質(zhì)的一般方法;
。2)從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會(huì)數(shù)形結(jié)合、分類(lèi)討論的數(shù)學(xué)思想方法,提高思維的靈活性,培養(yǎng)學(xué)生直觀(guān)、嚴(yán)謹(jǐn)?shù)乃季S品質(zhì).
情感、態(tài)度與價(jià)值觀(guān):
。1)體驗(yàn)從特殊到一般再到特殊的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題,激發(fā)學(xué)生自主探究的精神,在探究過(guò)程中體驗(yàn)合作學(xué)習(xí)的樂(lè)趣;
。2)讓學(xué)生在數(shù)形結(jié)合中感悟數(shù)學(xué)的統(tǒng)一美、和諧美,進(jìn)一步培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點(diǎn):指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應(yīng)用
教法研究:
本節(jié)課準(zhǔn)備由實(shí)際問(wèn)題引入指數(shù)函數(shù)的概念,這樣可以讓學(xué)生知道指數(shù)函數(shù)的概念來(lái)源于客觀(guān)實(shí)際,便于學(xué)生接受并有利于培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).
利用函數(shù)圖象來(lái)研究函數(shù)性質(zhì)是函數(shù)中的一個(gè)非常重要的思想,本節(jié)課將是利用特殊的指數(shù)函數(shù)圖象歸納總結(jié)指數(shù)函數(shù)的性質(zhì),這樣便于學(xué)生研究其變化規(guī)律,理解其性質(zhì)并掌握一般地探求函數(shù)性質(zhì)的方法同時(shí)運(yùn)用現(xiàn)代信息技術(shù)學(xué)習(xí)、探索和解決問(wèn)題,幫助學(xué)生理解新只是。
教學(xué)過(guò)程:
一、問(wèn)題情境:
問(wèn)題1:某種細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),以此類(lèi)推,一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞個(gè)數(shù)y與x的函數(shù)關(guān)系式是什么?
問(wèn)題2:一種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過(guò)一年剩余質(zhì)量約是原來(lái)的,設(shè)該物質(zhì)的初始質(zhì)量為1,經(jīng)過(guò)年后的剩余質(zhì)量為,你能寫(xiě)出之間的函數(shù)關(guān)系式嗎?
分析可知,函數(shù)的關(guān)系式分別是與
問(wèn)題3:在問(wèn)題1和2中,兩個(gè)函數(shù)的自變量都是正整數(shù),但在實(shí)際問(wèn)題中自變量不一定都是正整數(shù),比如在問(wèn)題2中,我們除了關(guān)心1年、2年、3年后該物質(zhì)的'剩余量外,還想知道3個(gè)月、一年半后該物質(zhì)的剩余量,怎么辦?
這就需要對(duì)函數(shù)的定義域進(jìn)行擴(kuò)充,結(jié)合指數(shù)概念的的擴(kuò)充,我們也可以將函數(shù)的定義域擴(kuò)充至全體實(shí)數(shù),這樣就得到了一個(gè)新的函數(shù)——指數(shù)函數(shù).
二、數(shù)學(xué)建構(gòu):
1]定義:
一般地,函數(shù)叫做指數(shù)函數(shù),其中.
問(wèn)題4:為什么規(guī)定?
問(wèn)題5:你能舉出指數(shù)函數(shù)的例子嗎?
閱讀材料(“放射性碳法”測(cè)定古物的年代):
在動(dòng)植物體內(nèi)均含有微量的放射性,動(dòng)植物死亡后,停止了新陳代謝,不在產(chǎn)生,且原有的會(huì)自動(dòng)衰變.經(jīng)過(guò)5740年(的半衰期),它的殘余量為原來(lái)的一半.經(jīng)過(guò)科學(xué)測(cè)定,若的原始含量為1,則經(jīng)過(guò)x年后的殘留量為=.
這種方法經(jīng)常用來(lái)推算古物的年代.
練習(xí)1:判斷下列函數(shù)是否為指數(shù)函數(shù).
。1)(2)
。3)(4)
說(shuō)明:指數(shù)函數(shù)的解析式y(tǒng)=中,的系數(shù)是1.
有些函數(shù)貌似指數(shù)函數(shù),實(shí)際上卻不是,如y=+k(a>0且a1,kZ);
有些函數(shù)看起來(lái)不像指數(shù)函數(shù),實(shí)際上卻是,如y=(a>0,且a1),因?yàn)樗梢曰癁閥=,其中>0,且1
2]通過(guò)圖象探究指數(shù)函數(shù)的性質(zhì)及其簡(jiǎn)單應(yīng)用:利用幾何畫(huà)板及其他多媒體軟件和學(xué)生一起完成
問(wèn)題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?
函數(shù)的定義域,值域,單調(diào)性,奇偶性等;
利用函數(shù)圖象研究函數(shù)的性質(zhì)
問(wèn)題7:作函數(shù)圖象的一般步驟是什么?
列表,描點(diǎn),作圖
探究活動(dòng)1:用列表描點(diǎn)法作出,的圖像(借助幾何畫(huà)板演示),觀(guān)察、比較這兩個(gè)函數(shù)的圖像,我們可以得到這兩個(gè)函數(shù)哪些共同的性質(zhì)?請(qǐng)同學(xué)們仔細(xì)觀(guān)察.
引導(dǎo)學(xué)生分析圖象并總結(jié)此時(shí)指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):
。1)定義域?R
。2)值域?函數(shù)的值域?yàn)?/p>
。3)過(guò)哪個(gè)定點(diǎn)?恒過(guò)點(diǎn),即
。4)單調(diào)性?時(shí),為上的增函數(shù)
。5)何時(shí)函數(shù)值大于1?小于1?當(dāng)時(shí);當(dāng)時(shí),
問(wèn)題8::是否所有的指數(shù)函數(shù)都是這樣的性質(zhì)?你能找出與剛才的函數(shù)性質(zhì)不一樣的指數(shù)函數(shù)嗎?
。ㄒ龑(dǎo)學(xué)生自我分析和反思,培養(yǎng)學(xué)生的反思能力和解決問(wèn)題的能力).
根據(jù)學(xué)生的發(fā)現(xiàn),再總結(jié)當(dāng)?shù)讛?shù)小于1時(shí)指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較.
問(wèn)題9:到現(xiàn)在,你能自制一份表格,比較及兩種不同情況下的圖象和性質(zhì)嗎?
。▽W(xué)生完成表格的設(shè)計(jì),教師適當(dāng)引導(dǎo))
《指數(shù)函數(shù)》的優(yōu)秀教案 篇3
一、教學(xué)目標(biāo):
知識(shí)與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生實(shí)際應(yīng)用函數(shù)的能力。
過(guò)程與方法:通過(guò)觀(guān)察圖象,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的性質(zhì)。領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問(wèn)題的能力。
情感態(tài)度與價(jià)值觀(guān):在指數(shù)函數(shù)的學(xué)習(xí)過(guò)程中,體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀(guān)察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)?科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):指數(shù)函數(shù)的概念、圖象和性質(zhì)。
教學(xué)難點(diǎn):對(duì)底數(shù)的分類(lèi),如何由圖象、解析式歸納指數(shù)函數(shù)的性質(zhì)。
三、教學(xué)過(guò)程:
。ㄒ唬﹦(chuàng)設(shè)情景
問(wèn)題1:某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞分裂的個(gè)數(shù)y與x之間,構(gòu)成一個(gè)函數(shù)關(guān)系,能寫(xiě)出x與y之間的函數(shù)關(guān)系式嗎?
學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=2x。
問(wèn)題2:一種放射性物質(zhì)不斷衰變?yōu)槠渌镔|(zhì),每經(jīng)過(guò)一年剩留的質(zhì)量約是原來(lái)的84%。求出這種物質(zhì)的剩留量隨時(shí)間(單位:年)變化的函數(shù)關(guān)系。設(shè)最初的質(zhì)量為1,時(shí)間變量用x表示,剩留量用y表示。
學(xué)生回答:y與x之間的關(guān)系式,可以表示為y=0。84x。
引導(dǎo)學(xué)生觀(guān)察,兩個(gè)函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。
1.指數(shù)函數(shù)的定義
一般地,函數(shù)y?a?a?0且a?1?叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是R。x
問(wèn)題:指數(shù)函數(shù)定義中,為什么規(guī)定“a?0且a?1”如果不這樣規(guī)定會(huì)出現(xiàn)什么情況?
。1)若a<0會(huì)有什么問(wèn)題?(如a??2,x?
x1則在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)2(2)若a=0會(huì)有什么問(wèn)題?(對(duì)于x?0,a無(wú)意義)
。3)若a=1又會(huì)怎么樣?(1x無(wú)論x取何值,它總是1,對(duì)它沒(méi)有研究的必要。)
師:為了避免上述各種情況的發(fā)生,所以規(guī)定a?0且a?1。
練1:指出下列函數(shù)那些是指數(shù)函數(shù):
?1?(1)y?4x(2)y?x4(3)y??4x(4)y???4?(5(轉(zhuǎn)載于:,n的大小:
設(shè)計(jì)意圖:這是指數(shù)函數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用,使學(xué)生在解題過(guò)程中加深對(duì)指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。
。ㄎ澹┱n堂小結(jié)
(六)布置作業(yè)
《指數(shù)函數(shù)》的優(yōu)秀教案 篇4
我本節(jié)課說(shuō)課的內(nèi)容是高中數(shù)學(xué)第一冊(cè)第二章第六節(jié)“指數(shù)函數(shù)”的第一課時(shí)——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運(yùn)用新課標(biāo)的理念指導(dǎo)本節(jié)課的教學(xué)。新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動(dòng)為主線(xiàn),在原有知識(shí)的基礎(chǔ)上,建構(gòu)新的知識(shí)體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標(biāo)分析,教法學(xué)法分析和教學(xué)過(guò)程分析這幾個(gè)方面加以說(shuō)明。
一、教材分析
1、教材的地位和作用:函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的貫穿于整個(gè)高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡(jiǎn)單的指數(shù)運(yùn)算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時(shí)也為今后研究對(duì)數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對(duì)知識(shí)起到了承上啟下的作用。
2、教學(xué)的重點(diǎn)和難點(diǎn):根據(jù)這一節(jié)課的內(nèi)容特點(diǎn)以及學(xué)生的實(shí)際情況,我將本節(jié)課教學(xué)重點(diǎn)定為指數(shù)函數(shù)的圖像、性質(zhì)及其運(yùn)用,本節(jié)課的難點(diǎn)是指數(shù)函數(shù)圖像和性質(zhì)的`發(fā)現(xiàn)過(guò)程,及指數(shù)函數(shù)圖像與底的關(guān)系。
二、教學(xué)目標(biāo)分析
基于對(duì)教材的理解和分析,我制定了以下的教學(xué)目標(biāo)
1、知識(shí)目標(biāo)(直接性目標(biāo)):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡(jiǎn)單應(yīng)用
2、能力目標(biāo)(發(fā)展性目標(biāo)):通過(guò)教學(xué)培養(yǎng)學(xué)生觀(guān)察、分析、歸納等思維能力,體會(huì)數(shù)形結(jié)合和分類(lèi)討論,增強(qiáng)學(xué)生識(shí)圖用圖的能力
3、情感目標(biāo)(可持續(xù)性目標(biāo)):通過(guò)學(xué)習(xí),使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問(wèn),善于探索的思維品質(zhì)。
三、教法學(xué)法分析
1、教學(xué)策略:首先從實(shí)際問(wèn)題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對(duì)指數(shù)函數(shù)的理解。
2、教學(xué):貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識(shí)的直觀(guān)素材和背景材料,又要激活相關(guān)知識(shí)和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問(wèn)題。
3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況,本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
《指數(shù)函數(shù)》的優(yōu)秀教案 篇5
一、教材分析
(一)教材的地位和作用
本課時(shí)主要學(xué)習(xí)指數(shù)函數(shù)的圖像和性質(zhì)概念,通過(guò)指數(shù)函數(shù)圖像的研究歸納其性質(zhì)!爸笖(shù)函數(shù)”是函數(shù)中的一個(gè)重要基本初等函數(shù),是后續(xù)知識(shí)——對(duì)數(shù)函數(shù)(指數(shù)函數(shù)的反函數(shù))的準(zhǔn)備知識(shí)。本節(jié)課的重點(diǎn)是指數(shù)函數(shù)的圖像及性質(zhì),難點(diǎn)在于弄清楚底數(shù)a對(duì)于函數(shù)變化的影響。通過(guò)這部分知識(shí)的學(xué)習(xí)進(jìn)一步深化學(xué)生對(duì)函數(shù)概念的理解與認(rèn)識(shí),使學(xué)生得到較系統(tǒng)的函數(shù)知識(shí)并體會(huì)研究函數(shù)較為完整的思維方法,此外還可類(lèi)比學(xué)習(xí)后面的其它函數(shù)。
。ǘ┙虒W(xué)目標(biāo)
知識(shí)維度:初中已經(jīng)學(xué)習(xí)了正比例函數(shù)、反比例函數(shù)和一次函數(shù),并對(duì)一次函數(shù)、二次函數(shù)作了更深入研究,學(xué)生已經(jīng)初步掌握了研究函數(shù)的一般方法,能夠從初中運(yùn)動(dòng)變化的角度認(rèn)識(shí)函數(shù)初步轉(zhuǎn)化到從集合與對(duì)應(yīng)的觀(guān)點(diǎn)來(lái)認(rèn)識(shí)函數(shù)。
能力維度:學(xué)生利用描點(diǎn)法畫(huà)出函數(shù)的圖像,并描述出函數(shù)的圖像特征,能夠?yàn)檠芯恐笖?shù)函數(shù)的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀(guān)察到抽象的數(shù)學(xué)活動(dòng)過(guò)程已有一定的體會(huì),已初步了解了數(shù)形結(jié)合的思想。
1、知識(shí)與技能目標(biāo):
(1)掌握指數(shù)函數(shù)的概念(能理解對(duì)a的限定以及自變量的.取值可推廣至實(shí)數(shù)范圍);
。2)會(huì)做指數(shù)函數(shù)的圖像;
(3)能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡(jiǎn)單應(yīng)用。
2、過(guò)程與方法目標(biāo):
通過(guò)由指數(shù)函數(shù)的圖像歸納其性質(zhì)的學(xué)習(xí)過(guò)程,由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性質(zhì)解決實(shí)際問(wèn)題,培養(yǎng)學(xué)生探究、歸納分析問(wèn)題的能力。
3、情感態(tài)度與價(jià)值觀(guān)目標(biāo):
。1)在學(xué)習(xí)的過(guò)程中體會(huì)研究具體函數(shù)及其性質(zhì)的過(guò)程和方法,如體驗(yàn)從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題
(2)通過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力通過(guò)探究體會(huì)“數(shù)形結(jié)合”的思想;感受知識(shí)之間的關(guān)聯(lián)性;體會(huì)研究函數(shù)由特殊到一般再到特殊的研究學(xué)習(xí)過(guò)程;體驗(yàn)研究函數(shù)的一般思維方法。
。ㄈ┙虒W(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)。
教學(xué)難點(diǎn):指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
教學(xué)關(guān)鍵:從實(shí)際出發(fā),使學(xué)生在獲得一定的感性認(rèn)識(shí)和基礎(chǔ)上,通過(guò)觀(guān)察、比較、歸納提高到理性認(rèn)識(shí),以形成完整的概念;在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來(lái)掃清障礙。
課時(shí)安排:1課時(shí)
二、學(xué)情分析
學(xué)生已有一定的函數(shù)基本知識(shí)、可建立簡(jiǎn)單的函數(shù)關(guān)系,為以函數(shù)關(guān)系的建立作為本節(jié)知識(shí)的引入做了知識(shí)準(zhǔn)備。此外,初中所學(xué)有理數(shù)范圍內(nèi)的指數(shù)相關(guān)知識(shí),將已有知識(shí)推廣至實(shí)數(shù)范圍。在此基礎(chǔ)上進(jìn)入指數(shù)函數(shù)的學(xué)習(xí),并將所學(xué)對(duì)函數(shù)的認(rèn)識(shí)進(jìn)一步推向系統(tǒng)化。
三、教法分析
。ㄒ唬┙虒W(xué)方式
直接講授與啟發(fā)探究相結(jié)合
。ǘ┙虒W(xué)手段
借助多媒體,展示學(xué)生的做圖結(jié)果;演示指數(shù)函數(shù)的圖像
四、教學(xué)基本思路:
。ㄒ唬﹦(chuàng)設(shè)情境,揭示課題。
1創(chuàng)設(shè)情境(如何建立一個(gè)關(guān)于指數(shù)函數(shù)的數(shù)學(xué)模型——后續(xù)解決)
2引入指數(shù)函數(shù)概念
。ǘ┨骄啃轮
1研究指數(shù)函數(shù)的圖象
2歸納總結(jié)指數(shù)函數(shù)的性質(zhì)
。ㄈ╈柟躺罨,發(fā)展思維
。ㄋ模w納整理,提高認(rèn)識(shí)
。ㄎ澹╈柟叹毩(xí)與作業(yè)
(六)教學(xué)設(shè)計(jì)說(shuō)明
1、拋出生活中的實(shí)例,需要建立一個(gè)關(guān)于指數(shù)函數(shù)的數(shù)學(xué)模型,為學(xué)生提出問(wèn)題;提高學(xué)生學(xué)習(xí)新知識(shí)的積極性以及體會(huì)數(shù)學(xué)與生活密切相關(guān)。
2、用簡(jiǎn)單易懂的實(shí)例引入指數(shù)函數(shù)概念,體會(huì)由特殊到一般的思想。
3、探究指數(shù)函數(shù)的性質(zhì)從“數(shù)”的角度用解析式不易解決,轉(zhuǎn)而由“形”——圖象突破,體會(huì)數(shù)形結(jié)合的思想。通過(guò)研究幾個(gè)具體的指數(shù)函數(shù)引導(dǎo)學(xué)生通過(guò)觀(guān)察圖象發(fā)現(xiàn)指數(shù)函數(shù)的圖象規(guī)律,從而歸納指數(shù)函數(shù)的一般性質(zhì),經(jīng)歷一個(gè)由特殊到一般的探究過(guò)程。讓學(xué)生在研究出指數(shù)函數(shù)的一般性質(zhì)后進(jìn)行總結(jié)歸納函數(shù)的其他性質(zhì),從而對(duì)函數(shù)進(jìn)行較為系統(tǒng)的研究。
4、進(jìn)行一些鞏固練習(xí)從而能對(duì)函數(shù)進(jìn)行較為基本的應(yīng)用
《指數(shù)函數(shù)》的優(yōu)秀教案 篇6
一、內(nèi)容及其解析
(一)內(nèi)容:指數(shù)函數(shù)的性質(zhì)的應(yīng)用。
(二)解析:通過(guò)進(jìn)一步鞏固指數(shù)函數(shù)的圖象和性質(zhì),掌握由指數(shù)函數(shù)和其他簡(jiǎn)單函數(shù)組成的復(fù)合函數(shù)的性質(zhì):定義域、值域、單調(diào)性,最值等性質(zhì)。
二、目標(biāo)及其解析
(一)教學(xué)目標(biāo)
指數(shù)函數(shù)的圖象及其性質(zhì)的應(yīng)用;
(二)解析
通過(guò)進(jìn)一步掌握指數(shù)函數(shù)的圖象和性質(zhì),能夠構(gòu)建指數(shù)函數(shù)的模型來(lái)解決實(shí)際問(wèn)題;體會(huì)指數(shù)函數(shù)在實(shí)際生活中的重要作用,感受數(shù)學(xué)建模在解題中的作用,提高學(xué)生分析問(wèn)題與解決問(wèn)題的能力。
三、問(wèn)題診斷分析
解決實(shí)際問(wèn)題本來(lái)就是學(xué)生的一個(gè)難點(diǎn),并且學(xué)生對(duì)函數(shù)模型也不熟悉,所以在構(gòu)建函數(shù)模型解決實(shí)際問(wèn)題是學(xué)生的一個(gè)難點(diǎn),解決的方法就是在實(shí)例中讓學(xué)生加強(qiáng)理解,通過(guò)實(shí)例讓學(xué)生感受到如何選擇適當(dāng)?shù)暮瘮?shù)模型。
四、教學(xué)過(guò)程設(shè)計(jì)
探究點(diǎn)一:平移指數(shù)函數(shù)的圖像
例1:畫(huà)出函數(shù)的圖像,并根據(jù)圖像指出它的單調(diào)區(qū)間.
解析:由函數(shù)的解析式可得:
其圖像分成兩部分,一部分是將(x-1)的圖像作出,而它的圖像可以看作的圖像沿x軸的負(fù)方向平移一個(gè)單位而得到的,另一部分是將的圖像作出,而它的圖像可以看作將的圖像沿x軸的負(fù)方向平移一個(gè)單位而得到的.
解:圖像由老師們自己畫(huà)出
變式訓(xùn)練一:已知函數(shù)
(1)作出其圖像;
(2)由圖像指出其單調(diào)區(qū)間;
解:(1)的圖像如下圖:
(2)函數(shù)的'增區(qū)間是(-,-2],減區(qū)間是[-2,+).
探究點(diǎn)二:復(fù)合函數(shù)的性質(zhì)
例2:已知函數(shù)
(1)求f(x)的定義域;
(2)討論f(x)的奇偶性;
解析:求定義域注意分母的范圍,判斷奇偶性需要注意定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng)。
解:(1)要使函數(shù)有意義,須-1,即x1,所以,定義域?yàn)?-,0)(0,+).
(2)變式訓(xùn)練二:已知函數(shù),試判斷函數(shù)的奇偶性;
簡(jiǎn)析:∵定義域?yàn)?且是奇函數(shù);
探究點(diǎn)三應(yīng)用問(wèn)題
例3某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過(guò)一年,這種物質(zhì)剩留的質(zhì)量是原來(lái)的
84%.寫(xiě)出這種物質(zhì)的剩留量關(guān)于時(shí)間的函數(shù)關(guān)系式.
【解】
設(shè)該物質(zhì)的質(zhì)量是1,經(jīng)過(guò)年后剩留量是.
經(jīng)過(guò)1年,剩留量
變式:儲(chǔ)蓄按復(fù)利計(jì)算利息,若本金為元,每期利率為,設(shè)存期是,本利和(本金加上利息)為元.
(1)寫(xiě)出本利和隨存期變化的函數(shù)關(guān)系式;
(2)如果存入本金1000元,每期利率為2.25%,試計(jì)算5期后的本利和.
分析:復(fù)利要把本利和作為本金來(lái)計(jì)算下一年的利息.
【解】
(1)已知本金為元,利率為則:
1期后的本利和為
2期后的本利和為
期后的本利和為
(2)將代入上式得
六.小結(jié)
通過(guò)本節(jié)課的學(xué)習(xí),本節(jié)課應(yīng)用了指數(shù)函數(shù)的性質(zhì)來(lái)解決了什么問(wèn)題?如何構(gòu)建指數(shù)函數(shù)模型,解決生活中的實(shí)際問(wèn)題?
《指數(shù)函數(shù)》的優(yōu)秀教案 篇7
教學(xué)目標(biāo):
進(jìn)一步理解指數(shù)函數(shù)及其性質(zhì),能運(yùn)用指數(shù)函數(shù)模型,解決實(shí)際問(wèn)題。
教學(xué)重點(diǎn):
用指數(shù)函數(shù)模型解決實(shí)際問(wèn)題。
教學(xué)難點(diǎn):
指數(shù)函數(shù)模型的建構(gòu)。
教學(xué)過(guò)程:
一、情境創(chuàng)設(shè)
某工廠(chǎng)今年的年產(chǎn)值為a萬(wàn)元,為了增加產(chǎn)值,今年增加了新產(chǎn)品的研發(fā),預(yù)計(jì)從明年起,年產(chǎn)值每年遞增15%,則明年的產(chǎn)值為_(kāi)_萬(wàn)元,后年的產(chǎn)值為_(kāi)_萬(wàn)元.若設(shè)x年后實(shí)現(xiàn)產(chǎn)值翻兩番,則得方程。
二、數(shù)學(xué)建構(gòu)
指數(shù)函數(shù)是常見(jiàn)的數(shù)學(xué)模型,也是重要的數(shù)學(xué)模型,常見(jiàn)于工農(nóng)業(yè)生產(chǎn),環(huán)境治理以及投資理財(cái)?shù)?/p>
遞增的常見(jiàn)模型為=(1+p%)x(p>0);遞減的常見(jiàn)模型則為=(1-p%)x(p>0)。
三、數(shù)學(xué)應(yīng)用
例1某種放射性物質(zhì)不斷變化為其他,每經(jīng)過(guò)一年,這種物質(zhì)剩留的質(zhì)量是原來(lái)的84%,寫(xiě)出這種物質(zhì)的剩留量關(guān)于時(shí)間的函數(shù)關(guān)系式。
例2某醫(yī)藥研究所開(kāi)發(fā)一種新藥,據(jù)檢測(cè):如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克),與服藥后的時(shí)間t(小時(shí))之間近似滿(mǎn)足如圖曲線(xiàn),其中OA是線(xiàn)段,曲線(xiàn)ABC是函數(shù)=at的圖象。試根據(jù)圖象,求出函數(shù)=f(t)的解析式。
例3某位公民按定期三年,年利率為2.70%的方式把5000元存入銀行.問(wèn)三年后這位公民所得利息是多少元?
例4某種儲(chǔ)蓄按復(fù)利計(jì)算利息,若本金為a元,每期利率為r,設(shè)存期是x,本利和(本金加上利息)為元。
。1)寫(xiě)出本利和隨存期x變化的函數(shù)關(guān)系式;
(2)如果存入本金1000元,每期利率為2.25%,試計(jì)算5期后的本利和。
。◤(fù)利是把前一期的`利息和本金加在一起作本金,再計(jì)算下一期利息的一種計(jì)算利息方法)
小結(jié):銀行存款往往采用單利計(jì)算方式,而分期付款、按揭則采用復(fù)利計(jì)算.這是因?yàn)樵诖婵钌,為了減少儲(chǔ)戶(hù)的重復(fù)操作給銀行帶來(lái)的工作壓力,同時(shí)也是為了提高儲(chǔ)戶(hù)的長(zhǎng)期存款的積極性,往往定期現(xiàn)年的利息比再次存取定期一年的收益要高;而在分期付款的過(guò)程中,由于每次存入的現(xiàn)金存期不一樣,故需要采用復(fù)利計(jì)算方式.比如“本金為a元,每期還b元,每期利率為r”,第一期還款時(shí)本息和應(yīng)為a(1+p%),還款后余額為a(1+p%)-b,第二次還款時(shí)本息為(a(1+p%)-b)(1+p%),再還款后余額為(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次還款后余額為a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b.這就是復(fù)利計(jì)算方式。
例52000~2002年,我國(guó)國(guó)內(nèi)生產(chǎn)總值年平均增長(zhǎng)7.8%左右.按照這個(gè)增長(zhǎng)速度,畫(huà)出從2000年開(kāi)始我國(guó)年國(guó)內(nèi)生產(chǎn)總值隨時(shí)間變化的圖象,并通過(guò)圖象觀(guān)察到2010年我國(guó)年國(guó)內(nèi)生產(chǎn)總值約為2000年的多少倍(結(jié)果取整數(shù))。
練習(xí):
1.(1)一電子元件去年生產(chǎn)某種規(guī)格的電子元件a個(gè),計(jì)劃從今年開(kāi)始的年內(nèi),每年生產(chǎn)此種規(guī)格電子元件的產(chǎn)量比上一年增長(zhǎng)p%,試寫(xiě)出此種規(guī)格電子元件的年產(chǎn)量隨年數(shù)變化的函數(shù)關(guān)系式;
。2)一電子元件去年生產(chǎn)某種規(guī)格的電子元件的成本是a元/個(gè),計(jì)劃從今年開(kāi)始的年內(nèi),每年生產(chǎn)此種規(guī)格電子元件的產(chǎn)量比上一年下降p%,試寫(xiě)出此種規(guī)格電子元件的單件成本隨年數(shù)變化的函數(shù)關(guān)系式。
2.某種細(xì)菌在培養(yǎng)過(guò)程中,每20分鐘分裂一次(一個(gè)分裂為兩個(gè)),經(jīng)3小時(shí)后,這種細(xì)菌可由1個(gè)分裂成個(gè)。
3.我國(guó)工農(nóng)業(yè)總產(chǎn)值計(jì)劃從2000年到2020年翻兩番,設(shè)平均每年增長(zhǎng)率為x,則得方程。
四、小結(jié):
1.指數(shù)函數(shù)模型的建立;
2.單利與復(fù)利;
3.用圖象近似求解。
五、作業(yè):
課本P71-10,16題。
【《指數(shù)函數(shù)》的優(yōu)秀教案】相關(guān)文章:
指數(shù)函數(shù)教案04-25
數(shù)學(xué)《指數(shù)與指數(shù)函數(shù)》教案02-25
高一數(shù)學(xué)指數(shù)函數(shù)教案09-29
《指數(shù)函數(shù)及其性質(zhì)》教案 鄧城04-25
關(guān)于矩陣指數(shù)函數(shù)計(jì)算的幾個(gè)注記04-28
冪函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)·對(duì)數(shù)及其運(yùn)算法則·教案04-25
復(fù)指數(shù)函數(shù)系在Lpα空間中的完備性04-26