- 相關(guān)推薦
初中數(shù)學有理數(shù)乘法教案
在教學工作者實際的教學活動中,總歸要編寫教案,教案是教學活動的總的組織綱領(lǐng)和行動方案。教案應(yīng)該怎么寫呢?下面是小編收集整理的初中數(shù)學有理數(shù)乘法教案,歡迎大家分享。
初中數(shù)學有理數(shù)乘法教案1
一、內(nèi)容和內(nèi)容解析
1、內(nèi)容
有理數(shù)乘法法則。
2、內(nèi)容解析
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算。有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學習有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學習是至關(guān)重要的。
與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”。本節(jié)課要在小學已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學生體會乘法法則的合理性。與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析。由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心。
基于以上分析,可以確定本課的教學重點是兩個有理數(shù)相乘的符號法則。
二、目標及其解析
1、目標
。1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法。
。2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性。
2、目標解析
達成目標(1)的標志是學生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果。
達成目標(2)的標志是學生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程。
三、教學問題診斷分析
有理數(shù)的乘法與小學學習的乘法的區(qū)別在于負數(shù)參與了運算。本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導,讓學生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性。上述過程中,學生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難。為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導,并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求。
本課的教學難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律。
四、教學過程設(shè)計
問題1我們知道,有理數(shù)分為正數(shù)、零、負數(shù)三類。按照這種分類,兩個有理數(shù)的乘法運算會出現(xiàn)哪幾種情況?
教師引導學生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù)。
設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復習有關(guān)知識,為下面的教學做好準備,又滲透了分類討論思想。
問題2下面從我們熟悉的乘法運算開始。觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0。
追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
如果學生仍然有困難,教師給予提示:
。1)四個算式有什么共同點?——左邊都有一個乘數(shù)3。
(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3。
設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備。通過追問、提示,使學生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”。
教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(—1)=—3,這是因為后一乘數(shù)從0遞減1就是—1,因此積應(yīng)該從0遞減3而得—3。
追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
3×(—2)=,
3×(—3)= 。
練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律。
設(shè)計意圖:讓學生自主構(gòu)造算式,加深對運算規(guī)律的理解。
追問3:從符號和絕對值兩個角度觀察這些算式(指師生給出的所有含正數(shù)乘負數(shù)的算式),你能說說它們的共性嗎?
先讓學生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積。
設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的.學習奠定基礎(chǔ)。
問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
3×3=9,
2×3=6,
1×3=3,
0×3=0。
鼓勵學生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律。
設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學生的模仿、概括的能力。
追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
。ā1)×3=,
。ā2)×3=,
。ā3)×3= 。
練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律。
追問2:類比正數(shù)乘負數(shù)規(guī)律的歸納過程,從符號和絕對值兩個角度觀察這些算式(指師生給出的所有含正數(shù)乘負數(shù)的算式),你能說說它們的共性嗎?
先讓學生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積。
追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
設(shè)計意圖:讓學生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”。既使學生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力。
問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
。ā3)×3=,
。ā3)×2=,
。ā3)×1=,
(—3)×0= 。
追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
(—3)×(—1)=,
(—3)×(—2)=,
。ā3)×(—3)= 。
設(shè)計意圖:由學生自主探究得出負數(shù)乘負數(shù)的結(jié)論。因為有前面積累的豐富經(jīng)驗,學生能獨立完成。
問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
學生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學生看教科書。
追問:你認為根據(jù)有理數(shù)乘法法則進行有理數(shù)乘法運算時,應(yīng)該按照怎樣的步驟?你能舉例說明嗎?
學生獨立思考、回答。如果有困難,可先讓學生看課本第29頁有理數(shù)乘法法則后面的一段文字。
設(shè)計意圖:讓學生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟。
學生獨立完成后,全班交流。
教師說明:在(3)中,我們得到了=1。與以前學習過的倒數(shù)概念一樣,我們說與—2互為倒數(shù)。一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
追問:在(2)中,8和—8互為相反數(shù)。由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘—1之間的關(guān)系(反過來有—8=8×(―1))。
例2用正數(shù)、負數(shù)表示氣溫的變化量,上升為正,下降為負。登山隊攀登一座山峰,每登高1km氣溫的變化量為—6°C,攀登3km后,氣溫有什么變化?
設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學的應(yīng)用價值。
小結(jié)、布置作業(yè)
請同學們帶著下列問題回顧本節(jié)課的內(nèi)容:
(1)你能說出有理數(shù)乘法法則嗎?
。2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
。3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則。
。4)你能舉例說明符號法則“負負得正”的合理性嗎?
設(shè)計意圖:引導學生從知識內(nèi)容和學習過程兩個方面進行小結(jié)。
作業(yè):教科書第30頁,練習1,2,3;第37頁,習題1。4第1題。
五、目標檢測設(shè)計
1、判斷下列運算結(jié)果的符號:
(1)5×(—3);
。2)(—3)×3;
。3)(—2)×(—7);
。4)(+0.5)×(+0.7)。
設(shè)計意圖:檢測學生對有理數(shù)乘法的符號法則的理解。
初中數(shù)學有理數(shù)乘法教案2
一、 教學目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
二、 教學重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
三、 教學過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?學生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
、 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
③ 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
。-2) ×(-3)=
。2)學生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
、诜e的絕對值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
。3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學生述說每一步理由。
(2)引導學生觀察、分析例子中兩因數(shù)的.關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
(3)學生做練習,教師評析。
。4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結(jié)出多因數(shù)相乘的符號法則。
【初中數(shù)學有理數(shù)乘法教案】相關(guān)文章:
有理數(shù)的乘法教案11-09
初中數(shù)學有理數(shù)教案02-23
有理數(shù)的乘法(1)教案12-17
有理數(shù)的乘法數(shù)學教案(精選11篇)06-16
數(shù)學口算乘法教案01-09
數(shù)學筆算乘法教案02-16
數(shù)學小數(shù)乘法教案03-23
小學數(shù)學乘法教案01-17
小學數(shù)學小數(shù)乘法教案02-03