- 相關(guān)推薦
人工神經(jīng)網(wǎng)絡(luò)應(yīng)用于繼電保護(hù)的探討
摘 要 根據(jù)現(xiàn)代控制技術(shù)的人工神經(jīng)網(wǎng)絡(luò)理論提出了一種保護(hù)原理構(gòu)成方案,并分析了原理實(shí)現(xiàn)的可行性和技術(shù)難點(diǎn)。人工神經(jīng)網(wǎng)絡(luò)(Aartificial Neural Network,下簡(jiǎn)稱(chēng)ANN)是模擬生物神經(jīng)元的結(jié)構(gòu)而提出的一種信息處理方法。早在1943年,已由心理學(xué)家Warren S.Mcculloch和數(shù)學(xué)家Walth H.Pitts提出神經(jīng)元數(shù)學(xué)模型,后被冷落了一段時(shí)間,80年代又迅猛興起[1]。ANN之所以受到人們的普遍關(guān)注,是由于它具有本質(zhì)的非線形特征、并行處理能力、強(qiáng)魯棒性以及自組織自學(xué)習(xí)的能力。其中研究得最為成熟的是誤差的反傳模型算法(BP算法,Back Propagation),它的網(wǎng)絡(luò)結(jié)構(gòu)及算法直觀、簡(jiǎn)單,在工業(yè)領(lǐng)域中應(yīng)用較多。
經(jīng)訓(xùn)練的ANN適用于利用分析振動(dòng)數(shù)據(jù)對(duì)機(jī)器進(jìn)行監(jiān)控和故障檢測(cè),預(yù)測(cè)某些部件的疲勞壽命[2]。非線形神經(jīng)網(wǎng)絡(luò)補(bǔ)償和魯棒控制綜合方法的應(yīng)用(其魯棒控制利用了變結(jié)構(gòu)控制或滑動(dòng)?刂),在實(shí)時(shí)工業(yè)控制執(zhí)行程序中較為有效[3]。人工神經(jīng)網(wǎng)絡(luò)(ANN)和模糊邏輯(Fuzzy Logic)的綜合,實(shí)現(xiàn)了電動(dòng)機(jī)故障檢測(cè)的啟發(fā)式推理。對(duì)非線形問(wèn)題,可通過(guò)ANN的BP算法學(xué)習(xí)正常運(yùn)行例子調(diào)整內(nèi)部權(quán)值來(lái)準(zhǔn)確求解[4]。
因此,對(duì)于電力系統(tǒng)這個(gè)存在著大量非線性的復(fù)雜大系統(tǒng)來(lái)講,ANN理論在電力系統(tǒng)中的應(yīng)用具有很大的潛力,目前已涉及到如暫態(tài),動(dòng)穩(wěn)分析,負(fù)荷預(yù)報(bào),機(jī)組最優(yōu)組合,警報(bào)處理與故障診斷,配電網(wǎng)線損計(jì)算,發(fā)電規(guī)劃,經(jīng)濟(jì)運(yùn)行及電力系統(tǒng)控制等方面[5]。
本文介紹了一種基于人工神經(jīng)網(wǎng)絡(luò)(ANN)理論的保護(hù)原理。
1 人工神經(jīng)網(wǎng)絡(luò)理論概述
BP算法是一種監(jiān)控學(xué)習(xí)技巧,它通過(guò)比較輸出單元的真實(shí)輸出和希望值之間的差別,調(diào)整網(wǎng)絡(luò)路徑的權(quán)值,以使下一次在相同的輸入下,網(wǎng)絡(luò)的輸出接近于希望值。圖1是人工神經(jīng)Ui的結(jié)構(gòu)模型,圖中Ui為神經(jīng)元內(nèi)部狀態(tài),Qi為門(mén)檻值,Yi為輸出信號(hào),Xi(i=1,2,…,n)為神經(jīng)元接收信號(hào)。該模型可表示為:
式中 Wji——連接權(quán)值。
BP算法的神經(jīng)網(wǎng)絡(luò)圖形如圖2所示,設(shè)網(wǎng)絡(luò)的輸入模塊為p,令其作用下網(wǎng)絡(luò)輸出單元j的輸出為Opj。如果輸出的希望值是Tpj,則其誤差為Dpj=Tpj-Opj。若輸入模塊的第i個(gè)單元輸入為Ipi,則就輸入模塊p而言,輸入接點(diǎn)I與輸出接點(diǎn)j之間的權(quán)值變化量為:
ΔWpji=zDpjIpi
式中,z是某一個(gè)常數(shù)。當(dāng)反復(fù)迭代該式時(shí),便可使實(shí)際值收斂于目標(biāo)值[6]。其中隱含層既有輸入網(wǎng)線,又有輸出網(wǎng)線,每一個(gè)箭頭都有一定的權(quán)值。
在神經(jīng)網(wǎng)絡(luò)投運(yùn)前,就應(yīng)用大量的數(shù)據(jù),包括正常運(yùn)行的、不正常運(yùn)行的,作為其訓(xùn)練內(nèi)容,以一定的輸入和期望的輸出通過(guò)BP算法去不斷修改網(wǎng)絡(luò)的權(quán)值。在投運(yùn)后,還可根據(jù)現(xiàn)場(chǎng)的特定情況進(jìn)行現(xiàn)場(chǎng)學(xué)習(xí),以擴(kuò)充ANN內(nèi)存知識(shí)量。從算法原理看,并行處理能力和非線性功能是BP算法的一大優(yōu)點(diǎn)。
2 神經(jīng)網(wǎng)絡(luò)型繼電保護(hù)
神經(jīng)網(wǎng)絡(luò)理論的保護(hù)裝置,可判別更復(fù)雜的模式,其因果關(guān)系是更復(fù)雜的、非線性的、模糊的、動(dòng)態(tài)的和非平穩(wěn)隨機(jī)的。它是神經(jīng)網(wǎng)絡(luò)(ANN)與專(zhuān)家系統(tǒng)(ES)融為一體的神經(jīng)網(wǎng)絡(luò)專(zhuān)家系統(tǒng),其中,ANN是數(shù)值的、聯(lián)想的、自組織的、仿生的方式,ES是認(rèn)知的和啟發(fā)式的。
如圖3所示,裝置可直接取線路及其周邊的模擬量、數(shù)字量,經(jīng)模式特征變換輸入給神經(jīng)網(wǎng)絡(luò),根據(jù)以前學(xué)習(xí)過(guò)的訓(xùn)練材料,對(duì)數(shù)據(jù)進(jìn)行推理、分析評(píng)價(jià)、輸出。專(zhuān)家系統(tǒng)對(duì)運(yùn)行過(guò)程控制和訓(xùn)練,按最優(yōu)方式收集數(shù)據(jù)或
[1] [2] [3]
【人工神經(jīng)網(wǎng)絡(luò)應(yīng)用于繼電保護(hù)的探討】相關(guān)文章:
基于人工神經(jīng)網(wǎng)絡(luò)的算法及技術(shù)應(yīng)用探討05-02
習(xí)語(yǔ)學(xué)習(xí)應(yīng)用于英語(yǔ)教學(xué)的探討05-02
工學(xué)結(jié)合應(yīng)用于大學(xué)英語(yǔ)教育的探討04-28
NOAA衛(wèi)星圖像神經(jīng)網(wǎng)絡(luò)分類(lèi)方法的探討04-29
ADCP應(yīng)用于黃河水文測(cè)驗(yàn)的探討04-29
淺談BP人工神經(jīng)網(wǎng)絡(luò)04-30
BP神經(jīng)網(wǎng)絡(luò)法在GPS高程擬合中的應(yīng)用探討04-30