- 相關(guān)推薦
證明等比數(shù)列
證明等比數(shù)列記Cn=an*a(n+1)
cn/c(n-1)=an*a(n+1)/an*a(n-1)=a(n+1)/a(n-1)=3
a(2n-1)=3*a(2n-3)
a(2n)=3*a(2n-2)
bn=a(2n-1)+a(2n)=3*a(2n-3)+3*a(2n-2)=3(bn-1)
因此bn/b(n-1)=3,所以bn為等比數(shù)列,公比為3。
2
設(shè)數(shù)列{a的第n項(xiàng)}的前n項(xiàng)和Sn=1/3(a的第n項(xiàng)-1),n屬于自然數(shù)
求證:數(shù)列{a的第n項(xiàng)}為等比數(shù)列
Sn=1/3(an-1)
S(n-1)=1/3(a(n-1)-1)
Sn-S(n-1)=an=1/3(an-1-a(n-1)+1)=(an-a(n-1)/3
3an=an-a(n-1)
2an=-a(n-1)
an/a(n-1)=-1/2
所以數(shù)列{an}為等比數(shù)列
3
已知前三項(xiàng)是2,4,8,數(shù)列滿足a(n+1)=a(n)+2n(就是第n+1項(xiàng)等于第n項(xiàng)加上2n),求數(shù)列的通項(xiàng)公式。這兒沒有告訴你數(shù)列是等比數(shù)列,求通項(xiàng)公式之前必須證明它是等比數(shù)列,請問怎么證明?
因?yàn)椋?/p>
a(n+1)-an=2n
所以:
a2-a1=2
a3-a2=4
a4-a3=6
a5-a4=8
.....
a(n)-a(n-1)=2(n-1)
上n-1個(gè)式子相加得到:
an-a1=2+4+6+8+.....2(n-1)
右邊是等差數(shù)列,且和=[2+2(n-1)](n-1)/2=n(n-1)
所以:
an-2=n^2-n
an=n^2-n+2
4、
已知數(shù)列{3*2的N此方},求證是等比數(shù)列
根據(jù)題意,數(shù)列是3*2^n(^n表示肩膀上的方次),n=1,2,3,...
為了驗(yàn)證它是等比數(shù)列只需要比較任何一項(xiàng)和它相鄰項(xiàng)的比值是一個(gè)不依賴項(xiàng)次的固定比值就可以了.
所以第n項(xiàng)和第n+1項(xiàng)分別是3*2^n和3*2^(n+1),相比之后有:
[3*2^(n+1)]/(3*2^n)=2
因?yàn)楸戎凳?,不依賴n的選擇,所以得到結(jié)論.
5
數(shù)列an前n項(xiàng)和為Sn 已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......) 證明
(1)(Sn/n)是等比數(shù)列
(2) S(n+1)=4an
1、A(n+1)=(n+2)sn/n=S(n+1)-Sn
即nS(n+1)-nSn=(n+2)Sn
nS(n+1)=(n+2)Sn+nSn
nS(n+1)=(2n+2)Sn
S(n+1)/(n+1)=2Sn/n
即S[(n+1)/(n+1)]/[Sn/n]=2
S1/1=A1=1
所以Sn/n是以2為公比1為首項(xiàng)的等比數(shù)列
2、由1有Sn/n是以2為公比1為首項(xiàng)的等比數(shù)列
所以Sn/n的通項(xiàng)公式是Sn/n=1*2^(n-1)
即Sn=n2^(n-1)
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
=n2^(n-1)-(n-1)2^(n-2)
=n*2*2^(n-2)-(n-1)2^(n-2)
=[2n-(n-1)]*2^(n-2)
=(n+1)2^(n-2)
=(n+1)*2^n/2^2
=(n+1)2^n/4
=S(n+1)/4
所以有S(n+1)=4An
【證明等比數(shù)列】相關(guān)文章:
無窮遞縮等比數(shù)列04-29
學(xué)習(xí)等比數(shù)列時(shí)常見的誤區(qū)04-30
等比數(shù)列的教學(xué)反思(通用7篇)05-27
《等比數(shù)列的前n項(xiàng)和》教學(xué)反思04-30
單位證明范文_證明05-15
離職證明離職證明01-22
小孩改名證明范文_證明05-23
證明04-29