一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

勾股定理的無字證明

時間:2023-04-29 20:40:22 證明范文 我要投稿
  • 相關(guān)推薦

勾股定理的無字證明

勾股定理的無字證明

學(xué)習(xí)勾股定理時,我們學(xué)會運用圖(1)驗證它的正確性;圖中大正方形的面積可表示為 ,也可表示為 ,即 由此推出勾股定理 ,這種根據(jù)圖形可以極簡單地直觀推論或驗證數(shù)學(xué)規(guī)律和公式的方法,簡稱“無字證明”。

勾股定理的無字證明

(1)請你用圖(2)(2002年國際數(shù)字家大會會標(biāo))的面積表達(dá)式驗證勾股定理(其中四個直角三角形全等)。

(2)請你用(3)提供的圖形進(jìn)行組合,用組合圖形的面積表達(dá)式驗證 :

(x+y)^2=x^2+2xy+y^2

(3)請你自己設(shè)計圖形的組合,用其面積表達(dá)式驗證:

(x+p)(x+q)=x^2+px+qx+pq=x^2+(p+q)x+pq

2這個定理有許多證明的方法,其證明的方法可能是數(shù)學(xué)眾多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition一書中總共提到367種證明方式。

有人會嘗試以三角恒等式(例如:正弦和余弦函數(shù)的泰勒級數(shù))來證明勾股定理,但是,因為所有的基本三角恒等式都是建基于勾股定理,所以不能作為勾股定理的證明(參見循環(huán)論證)。

利用相似三角形的證法

利用相似三角形證明

有許多勾股定理的證明方式,都是基于相似三角形中兩邊長的比例。

設(shè)ABC為一直角三角形, 直角于角C(看附圖). 從點C畫上三角形的高,并將此高與AB的交叉點稱之為H。此新三角形ACH和原本的三角形ABC相似,因為在兩個三角形中都有一個直角(這又是由于“高”的定義),而兩個三角形都有A這個共同角,由此可知第三只角都是相等的。同樣道理,三角形CBH和三角形ABC也是相似的。這些相似關(guān)系衍生出以下的比率關(guān)系:

因為BC=a,AC=b,AB=c

所以a/c=HB/a and b/c=AH/b

可以寫成a*a=c*HB and b*b=C*AH

綜合這兩個方程式,我們得到a*a+b*b=c*HB+C*AH=C*(HB+AH)=c*c

換句話說:a*a+b*b=c*c

[*]----為乘號

歐幾里得的證法

在歐幾里得的《幾何原本》一書中提出勾股定理由以下證明后可成立。 設(shè)△ABC為一直角三角形,其中A為直角。從A點劃一直線至對邊,使其垂直于對邊上的正方形。此線把對邊上的正方形一分為二,其面積分別與其余兩個正方形相等。

在正式的證明中,我們需要四個輔助定理如下:

如果兩個三角形有兩組對應(yīng)邊和這兩組邊所夾的角相等,則兩三角形全等。(SAS定理) 三角形面積是任一同底同高之平行四邊形面積的一半。 任意一個正方形的面積等于其二邊長的乘積。 任意一個四方形的面積等于其二邊長的乘積(據(jù)輔助定理3)。 證明的概念為:把上方的兩個正方形轉(zhuǎn)換成兩個同等面積的平行四邊形,再旋轉(zhuǎn)并轉(zhuǎn)換成下方的兩個同等面積的長方形。

其證明如下:

設(shè)△ABC為一直角三角形,其直角為CAB。 其邊為BC、AB、和CA,依序繪成四方形CBDE、BAGF和ACIH。 畫出過點A之BD、CE的平行線。此線將分別與BC和DE直角相交于K、L。 分別連接CF、AD,形成兩個三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是線性對應(yīng)的,同理可證B、A和H。 ∠CBD和∠FBA皆為直角,所以∠ABD等于∠FBC。 因為 AB 和 BD 分別等于 FB 和 BC,所以△ABD 必須相等于△FBC。 因為 A 與 K 和 L是線性對應(yīng)的,所以四方形 BDLK 必須二倍面積于△ABD。 因為C、A和G有共同線性,所以正方形BAGF必須二倍面積于△FBC。 因此四邊形 BDLK 必須有相同的面積 BAGF = AB。 同理可證,四邊形 CKLE 必須有相同的面積 ACIH = AC。 把這兩個結(jié)果相加, AB+ AC = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是個正方形,因此AB + AC = C。 此證明是于歐幾里得《幾何原本》一書第1.47節(jié)所提出的

其余見: 勾股定理的美妙證明 [梁卷明網(wǎng)站: 梁卷明

2009年3月24日晚,我參加了廣西教研網(wǎng)的主題研討活動之后,對勾股定理的證明作了進(jìn)一步的研究,2009年3月28日下午我終于發(fā)現(xiàn)了一個美妙的證明:

勾股定理:如圖,直角三角形ABC中:AC+BC=AB.

證明:如圖1,分別以AC、CB、BA為邊長作正方形ACNM、正方形CBSQ、正方形BAPR,則易知⊿ABC≌⊿RBS,從而點Q必在SR上,又把梯形ABNM沿BR方向平移,使點B與點R重合,則梯形ABNM平移至梯形PRQT的位置;顯然⊿RSB≌⊿PTA, 如圖2,再把⊿RSB沿BA方向平移,使點B與點A重合,則⊿RSB必與⊿PTA重合!

故有:正方形ACNM的面積+正方形CBSQ的面積=正方形BAPR的面積,即得:AC+BC=AB.

【勾股定理的無字證明】相關(guān)文章:

無收入證明01-27

無收入證明【經(jīng)典】07-26

無收入證明05-28

(精品)無收入證明07-11

無收入證明范本12-27

【通用】無收入證明07-26

【熱】無收入證明06-23

無收入證明新版01-13

無犯罪記錄證明02-07

無收入證明模板02-09