- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 相關(guān)推薦
二次根式教案范文匯編八篇
在教學(xué)工作者開展教學(xué)活動(dòng)前,常常要寫一份優(yōu)秀的教案,借助教案可以讓教學(xué)工作更科學(xué)化。怎樣寫教案才更能起到其作用呢?下面是小編精心整理的二次根式教案8篇,僅供參考,希望能夠幫助到大家。
二次根式教案 篇1
【教學(xué)目標(biāo)】
1.運(yùn)用法則
進(jìn)行二次根式的乘除運(yùn)算;
2.會(huì)用公式
化簡二次根式。
【教學(xué)重點(diǎn)】
運(yùn)用
進(jìn)行化簡或計(jì)算
【教學(xué)難點(diǎn)】
經(jīng)歷二次根式的乘除法則的'探究過程
【教學(xué)過程】
一、情境創(chuàng)設(shè):
1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?
2.計(jì)算:
二、探索活動(dòng):
1.學(xué)生計(jì)算;
2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?
3.概括:
得出:二次根式相乘,實(shí)際上就是把被開方數(shù)相乘,而根號(hào)不變。
將上面的公式逆向運(yùn)用可得:
積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。
三、例題講解:
1.計(jì)算:
2.化簡:
小結(jié):如何化簡二次根式?
1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;
2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。
四、課堂練習(xí):
(一).P62 練習(xí)1、2
其中2中(5)
注意:
不是積的形式,要因數(shù)分解為36×16=242.
(二).P67 3 計(jì)算 (2)(4)
補(bǔ)充練習(xí):
1.(x>0,y>0)
2.拓展與提高:
化簡:1).(a>0,b>0)
2).(y
2.若,求m的取值范圍。
☆3.已知:,求的值。
五、本課小結(jié)與作業(yè):
小結(jié):二次根式的乘法法則
作業(yè):
1).課課練P9-10
2).補(bǔ)充習(xí)題
二次根式教案 篇2
教學(xué)目標(biāo)
課標(biāo)要求:學(xué)生要學(xué)會(huì)學(xué)習(xí)、自主學(xué)習(xí),要為學(xué)生終生學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ),根據(jù)教學(xué)大綱和新課標(biāo)的要求,根據(jù)教材內(nèi)容和學(xué)生的特點(diǎn)我確定了本節(jié)課的教學(xué)目標(biāo) 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學(xué)生的歸納概括能力。 3、通過對二次根式的概念和性質(zhì)的探究,提高數(shù)學(xué)探究能力和歸納表達(dá)能力。 4、學(xué)生經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,體驗(yàn)發(fā)現(xiàn)的樂趣,并提高應(yīng)用的意識(shí)。
教學(xué)重點(diǎn):二次根式的概念和基本性質(zhì)
教學(xué)難點(diǎn):二次根式的基本性質(zhì)的靈活運(yùn)用
教法和學(xué)法
教學(xué)活動(dòng)的本質(zhì)是一種合作,一種交流。學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者,本節(jié)課主要采用自主學(xué)習(xí),合作探究,引領(lǐng)提升的方式展開教學(xué)。依據(jù)學(xué)生的年齡特點(diǎn)和已有的知識(shí)基礎(chǔ),本節(jié)課注重加強(qiáng)知識(shí)間的縱向聯(lián)系,,拓展學(xué)生探索的空間,體現(xiàn)由具體到抽象的認(rèn)識(shí)過程。為了為后續(xù)學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會(huì)遇到很多實(shí)際問題,在解決實(shí)際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當(dāng)加強(qiáng)練習(xí),讓學(xué)生養(yǎng)成聯(lián)系和發(fā)展的觀點(diǎn)學(xué)習(xí)數(shù)學(xué)的習(xí)慣。
教學(xué)過程
活動(dòng)一:根據(jù)學(xué)生已有知識(shí)探究二次根式的概念 1.探究二次根式概念 由四個(gè)實(shí)際問題(三個(gè)幾何問題,一個(gè)物理問題)入手,設(shè)置問題情境,讓學(xué)生感受到研究二次根式來源于生活又服務(wù)于生活。 思考:用帶有根號(hào)的式子填空,看看寫出的結(jié)果有什么特點(diǎn)? (1)要做一個(gè)兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應(yīng)為 cm
(2)面積為S的正方形的邊長為
(3)要修建一個(gè)面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)
(4)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與開始落下時(shí)的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學(xué)生發(fā)現(xiàn)所填結(jié)果都表示一個(gè)數(shù)的算術(shù)平方根,教師引導(dǎo)學(xué)生用一個(gè)式子表示這些有共同特點(diǎn)的式子。學(xué)生表示為,此時(shí)教師啟發(fā)學(xué)生回憶已學(xué)平方根的性質(zhì)讓學(xué)生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習(xí):x取何值時(shí)下列各式有意義,通過4小題的訓(xùn)練,讓學(xué)生體會(huì)二次根式概念的初步應(yīng)用。加深對二次根式定義的理解,并注重新舊知識(shí)間的聯(lián)系,用轉(zhuǎn)化的思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。
活動(dòng)二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學(xué)生分類討論探究出:(a)是一個(gè)非負(fù)數(shù),此時(shí)歸納出二次根式的第一個(gè)性質(zhì):雙重非負(fù)性。培養(yǎng)學(xué)生的分類討論和概括能力。例2:,則變式:,
活動(dòng)三:探究二次根式的`性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個(gè)性質(zhì),首先讓學(xué)生通過探究活動(dòng)感受這條結(jié)論,然后再從算術(shù)平方根的意義出發(fā),結(jié)合具體例子對這條結(jié)論進(jìn)行分析,引導(dǎo)學(xué)生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運(yùn)算與平方運(yùn)算的關(guān)系,培養(yǎng)學(xué)生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學(xué)生口述教師板書,后面的兩題由學(xué)生板演引導(dǎo)學(xué)生分析(2)(4)實(shí)質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實(shí)數(shù)范圍內(nèi)分解因式
活動(dòng)四:探究二次根式的性質(zhì)3 3.探究 在活動(dòng)三的基礎(chǔ)上出示課本第4頁的探究: 引導(dǎo)學(xué)生比較活動(dòng)三與活動(dòng)四探究中兩組題目的不同之處,活動(dòng)三中的題目是對非負(fù)數(shù)先進(jìn)行開平方運(yùn)算,再進(jìn)行平方運(yùn)算;而活動(dòng)四中的題目正好相反,是先進(jìn)行平方運(yùn)算,再進(jìn)行開平方運(yùn)算。再次由特殊到一般的讓學(xué)生歸納出二次根式的又一個(gè)性質(zhì)。培養(yǎng)學(xué)生觀察、對比的能力和意識(shí)。 此時(shí)引導(dǎo)學(xué)生談一談對()2和的聯(lián)系和區(qū)別 相同點(diǎn):①都有平方和開平方運(yùn)算 ②運(yùn)算結(jié)果都是非負(fù)數(shù) ③僅當(dāng)a時(shí),()2= 不同點(diǎn):①從形式和運(yùn)算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運(yùn)算結(jié)果看:()2=a(a),(a為任意數(shù)
二次根式教案 篇3
一、內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
。3)了解代數(shù)式的概念.
2.目標(biāo)解析
(1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);
(2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
(3)學(xué)生能從已學(xué)過的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.
三、教學(xué)問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
四、教學(xué)過程設(shè)計(jì)
1.探究性質(zhì)1
問題1 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的'平方.
問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計(jì)算
。1)
。2)
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.
2.探究性質(zhì)2
問題4 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.
問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計(jì)算
。1)
。2)
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.
3.歸納代數(shù)式的概念
問題7 回顧我們學(xué)過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?
師生活動(dòng):學(xué)生概括式子的共同特征,得得出代數(shù)式的概念.
【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運(yùn)用
。1)算一算:
【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).
。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?
【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
(3)談一談你對 與 的認(rèn)識(shí).
【設(shè)計(jì)意圖】加深學(xué)生對二次根式性質(zhì)的理解.
5.總結(jié)反思
。1)你知道了二次根式的哪些性質(zhì)?
。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡需要注意什么?
。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?
(4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識(shí).
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
二次根式教案 篇4
1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?
2.學(xué)生觀察下面的例子,并計(jì)算:
由學(xué)生總結(jié)上面兩個(gè)式的關(guān)系得:
類似地,請每個(gè)同學(xué)再舉一個(gè)例子,然后由這些特殊的例子,得出:
(≥0,b0)
使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過程.
類似地,請每個(gè)同學(xué)再舉一個(gè)例子,
請學(xué)生們思考為什么b的取值范圍變小了?
與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.
對比二次根式的`乘法推導(dǎo)出除法的運(yùn)算方法
增強(qiáng)學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.
對學(xué)生進(jìn)一步強(qiáng)化被開方數(shù)的取值范圍,以及分母不能為零.
強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).
教學(xué)過程設(shè)計(jì)
問題與情境師生行為設(shè)計(jì)意圖
活動(dòng)二自我檢測
活動(dòng)三挑戰(zhàn)逆向思維
把反過來,就得到
。ā0,b0)
利用它就可以進(jìn)行二次根式的化簡.
例2化簡:
。1)
。2)(b≥0).
解:(1)(2)練習(xí)2化簡:
。1)(2)活動(dòng)四談?wù)勀愕氖斋@
1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).
2.會(huì)利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.
找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計(jì)算,然后再找學(xué)生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?
找學(xué)生口述解題過程,教師將過程寫在黑板上.
請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.
請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.
為了更快地發(fā)現(xiàn)學(xué)生的錯(cuò)誤之處,以便糾正.
此處進(jìn)行簡單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.
讓學(xué)困生在自己做題時(shí)有一個(gè)參照.
充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.
二次根式教案 篇5
一、教學(xué)目標(biāo)
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
二、教學(xué)設(shè)計(jì)
小結(jié)、歸納、提高
三、重點(diǎn)、難點(diǎn)解決辦法
1.教學(xué)重點(diǎn):分母有理化.
2.教學(xué)難點(diǎn):分母有理化的技巧.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
七、教學(xué)過程
【復(fù)習(xí)提問】
二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.
例1 說出下列算式的運(yùn)算步驟和順序:
。1) (先乘除,后加減).
。2) (有括號(hào),先去括號(hào);不宜先進(jìn)行括號(hào)內(nèi)的運(yùn)算).
。3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡一個(gè)式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的`方法(依據(jù)分式的基本性質(zhì)).
例如:等式子的化簡,如果分母是兩個(gè)二次根式的和,應(yīng)該怎樣化簡?
引入新課題.
【引入新課】
化簡式子 ,乘以什么樣的式子,分母中的根式符號(hào)可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個(gè)式子就是 ,從而可將式子化簡.
例2 把下列各式的分母有理化:
。1) ; (2) ; (3)
解:略.
注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.
二次根式教案 篇6
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ).
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會(huì)進(jìn)行簡單的二次根式的除法運(yùn)算;
(3) 理解最簡二次根式的概念.
2.目標(biāo)解析
(1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進(jìn)行運(yùn)算.
(3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式.
三、教學(xué)問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的.算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.
四、教學(xué)過程設(shè)計(jì)
1.復(fù)習(xí)提問,探究規(guī)律
問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動(dòng) 學(xué)生回答。
【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
五、目標(biāo)檢測設(shè)計(jì)
二次根式教案 篇7
教學(xué)目標(biāo)
1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;
2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):含二次根式的式子的混合運(yùn)算.
難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡和計(jì)算含二次根式的式子.
教學(xué)過程設(shè)計(jì)
一、復(fù)習(xí)
1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.
指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個(gè)二次根式相除,
計(jì)算結(jié)果要把分母有理化.
3.在二次根式的化簡或計(jì)算中,還常用到以下兩個(gè)二次根式的關(guān)系式:
4.在含有二次根式的式子的化簡及求值等問題中,常運(yùn)用三個(gè)可逆的式子:
二、例題
例1 x取什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義:
分析:
(1)題是兩個(gè)二次根式的和,x的取值必須使兩個(gè)二次根式都有意義;
(3)題是兩個(gè)二次根式的和, x的取值必須使兩個(gè)二次根式都有意義;
(4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時(shí)使分母的值不等于零.
x-2且x0.
解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個(gè)二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.
解 因?yàn)?-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質(zhì)化簡含二次根式的式子時(shí),要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個(gè)二次根式的被開方數(shù)的式子如何化為完全平方式?
分析:先把第二個(gè)式子化簡,再把兩個(gè)式子進(jìn)行通分,然后進(jìn)行計(jì)算.
注意:
所以在化簡過程中,
例6
分析:如果把兩個(gè)式子通分,或把每一個(gè)式子的分母有理化再進(jìn)行計(jì)算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個(gè)式子的分母看作一個(gè)整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹喗荩?/p>
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習(xí)
1.選擇題:
A.a(chǎn)2B.a(chǎn)2
C.a(chǎn)2D.a(chǎn)<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計(jì)算:
四、小結(jié)
1.本節(jié)課復(fù)習(xí)的`五個(gè)基本問題是“二次根式”這一章的主要基礎(chǔ)知識(shí),同學(xué)們要深刻理解并牢固掌握.
2.在一次根式的化簡、計(jì)算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運(yùn)用二次根式的四個(gè)基本性質(zhì)進(jìn)行二次根式的運(yùn)算時(shí),一定要注意論述每一個(gè)性質(zhì)中字母的取值范圍的條件.
4.通過例題的討論,要學(xué)會(huì)綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡、計(jì)算及求值等問題.
五、作業(yè)
1.x是什么值時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
2.把下列各式化成最簡二次根式:
二次根式教案 篇8
第十六章 二次根式
代數(shù)式用運(yùn)算符號(hào)把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個(gè)的數(shù)字或單個(gè)的字母也是代數(shù)式
5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)寬:3 ;長:5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化簡二次根式時(shí),當(dāng)根號(hào)內(nèi)的因式移到根號(hào)外面時(shí),一定要注意原來根號(hào)里面的符號(hào),這也是化簡時(shí)最容易出錯(cuò)的地方.
解:乙的解答是錯(cuò)誤的.因?yàn)楫?dāng)a=時(shí),=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.
本節(jié)課通過“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對知識(shí)的形成與掌握變得簡單起來,將一個(gè)一個(gè)知識(shí)點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.
在探究二次根式的性質(zhì)時(shí),通過“提問——追問——討論”的形式展開,保證了活動(dòng)有一定的針對性,但是學(xué)生發(fā)揮主體作用不夠.
在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.
練習(xí)(教材第4頁)
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
習(xí)題16.1(教材第5頁)
1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時(shí),有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時(shí),有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時(shí),有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時(shí),有意義.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個(gè)長方形的相鄰兩邊的長分別為和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.
6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.
7.解:(1)∵x2+1>0恒成立,∴無論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時(shí), 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時(shí),在實(shí)數(shù)范圍內(nèi)有意義.
8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時(shí),t= =,當(dāng)h=25時(shí),t= =.故當(dāng)h=10和h=25時(shí),小球落地所用的時(shí)間分別為 s和 s.
9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.
10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時(shí), r= =,當(dāng)V=10π時(shí),r= =1,當(dāng)V=20π時(shí),r= =.
如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡:+.
〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡.
解:由數(shù)軸可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.
已知a,b,c為三角形的三條邊,則+= .
〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號(hào),再去根號(hào)、絕對值符號(hào)并化簡.因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解題策略] 此類化簡問題要特別注意符號(hào)問題.
化簡:.
〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.
解:當(dāng)x≥3時(shí),=|x-3|=x-3;
當(dāng)x<3時(shí),=|x-3|=-(x-3)=3-x.
[解題策略] 化簡時(shí),先將它化成|a|,再根據(jù)絕對值的意義分情況進(jìn)行討論.
5
O
M
【二次根式教案】相關(guān)文章:
二次根式教案02-15
二次根式09-29
二次根式教案15篇02-27
數(shù)學(xué)二次根式教案02-15
關(guān)于把二次根式化為最簡二次根式的習(xí)題10-06
二次根式的除法10-06
二次根式 習(xí)題10-06
二次根式的乘法09-29
二次根式的除法09-29
二次根式的化簡09-29