一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

八年級數(shù)學下冊《勾股定理》教學反思

時間:2023-04-30 08:36:15 教學反思 我要投稿

八年級數(shù)學下冊《勾股定理》教學反思

  《勾股定理》一章檢測結(jié)果出來了,學生考績很不理想,很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉(zhuǎn)反側(cè)。

八年級數(shù)學下冊《勾股定理》教學反思

  一是沒有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學直接根據(jù)勾股定理得:AB=5。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。

  二是沒有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長分別是4c和5c,求第三邊的長。很多同學可能是受勾股數(shù)“3,4,5”的影響,錯把結(jié)果寫成了3c,其實這里的第三邊是斜邊.

  三是缺乏分類思想,考慮問題不全面,導(dǎo)致解答錯誤。例如:已知直角三角形兩邊長分別是1、4,求第三邊的長。這里的第三邊有可能是斜邊也有可能是直角邊,所以結(jié)果應(yīng)該有兩個,但好多同學都填了一個答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應(yīng)考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會漏解。

  四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:已知三角形的三邊長分別為a=0.6,b=1,c=0.8,問這個三角形是直角三角形嗎?有的同學認為此三角形不是直角三角形,其實這個三角形是以b為斜邊的直角三角形。

  五是缺少方程思想和轉(zhuǎn)化思想,使綜合類試題痛失分數(shù)。

  六是書寫不規(guī)范。例如:運用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的同學寫出一句“由勾股定理得”的不恰當?shù)臄⑹觥?/p>

  針對上述問題,痛定思痛,感悟頗多:

  第一,教學不可削弱技能的訓練。要學生真正掌握某個知識,如果缺少相應(yīng)技能的訓練是不科學的。正如教人開車的教練把開車的要點、技巧講清楚,然后叫學車的學生馬上開車去考試一樣。試問:當教師在講臺上滔滔不絕地講解時,能否保證每一個學生都專心去聽?能否保證每一個專心去聽的學生都聽得明白?能否保證每一個聽得明白的學生都能解同一類題目?可見:“課堂上教師講,學生聽,聽就會懂,懂就會做!敝皇墙處熞粠樵傅淖龇ǎ處熤挥胁粷M足于自己的“講清楚”,在課堂上幫助學生獨立完成,并進行一定量的訓練,才能實現(xiàn)教學的有效性。

  第二,巧設(shè)錯誤案例,讓學生辨錯、糾錯,即學生對教師的有意“示錯”進行分析、判斷,提高防錯能力。在教學中,教師有時可恰到好處,有意地把估計學生易錯的做法顯示給學生,以引起學生的注意,然后通過師生共同分析錯因,加以糾錯,達到及時、有效預(yù)防,并避免學生出現(xiàn)類似錯誤的目的。這樣,可防患于未然,并提高學生分析、判斷、解決問題的能力。

  第三,教學應(yīng)注重數(shù)學思想和方法傳授。理解掌握各種數(shù)學思想和方法是形成數(shù)學技能技巧,提高數(shù)學能力的前提。 學生學習數(shù)學,學會是基礎(chǔ),會學是目的,教是為了不教。教學中,在加強技能訓練的同時,要強化數(shù)學思想和數(shù)學方法的教學,做到講方法聯(lián)系思想,以思想指導(dǎo)方法,使二者相互交融,相得益彰。此外,在教學中培養(yǎng)學生的“問題意識”,激勵學生善于發(fā)現(xiàn)問題、思考問題,并能運用數(shù)學方法去解決廣泛的多種多樣的實際問題,以便增強學生探究新知識、新方法的創(chuàng)造能力。

  第四,教學應(yīng)加大綜合訓練的力度。目前的綜合題已經(jīng)由單純的知識疊加型轉(zhuǎn)化為知識、方法和能力綜合型尤其是創(chuàng)新能力型試題,具有知識容量大、解題方法多、能力要求高、突顯數(shù)學思想方法的運用以及創(chuàng)新意識等特點。教學時應(yīng)抓好“三轉(zhuǎn)”能力的培養(yǎng):(1)語言轉(zhuǎn)換能力。每道數(shù)學綜合題都是由一些特定的文字語言、符號語言、圖形語言所組成,解綜合題往往需要較強的語言轉(zhuǎn)換能力,能把普通語言轉(zhuǎn)換成數(shù)學語言。(2)概念轉(zhuǎn)換能力:綜合題的轉(zhuǎn)譯常常需要較強的數(shù)學概念的轉(zhuǎn)換能力。(3)數(shù)形轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結(jié)合上找出解題思路。只有如此,方可找到解決綜合題的突破口。

  第五,教學勿忘發(fā)揮板書的特有功能。板書通過學生的視角器官傳遞信息,比語言富有直觀性。條例清晰,層次分明,邏輯嚴謹?shù)慕獯疬^程的板演,不但便于學生理解、掌握知識,還會給學生起到示范作用。

  相信通過反思教學,優(yōu)化方法,細化過程,一定能取得事半功倍之效。

【八年級數(shù)學下冊《勾股定理》教學反思】相關(guān)文章:

人教版八年級數(shù)學下冊《勾股定理》教學反思范文04-27

《勾股定理》教學反思04-30

八年級勾股定理教學反思04-22

八年級數(shù)學下冊教學反思04-18

八年級數(shù)學下冊教學反思(精選16篇)07-17

勾股定理公開課的教學反思范文04-28

八年級數(shù)學勾股定理教案02-22

北師大版數(shù)學下冊教學反思04-04

數(shù)學下冊《面積和面積單位》教學反思04-27

《勾股定理》課例與反思04-28