- 相關推薦
小學數(shù)學一元一次方程教案
作為一名為他人授業(yè)解惑的教育工作者,時常要開展教案準備工作,教案是教材及大綱與課堂教學的紐帶和橋梁。那么教案應該怎么寫才合適呢?下面是小編為大家收集的小學數(shù)學一元一次方程教案,希望能夠幫助到大家。
小學數(shù)學一元一次方程教案1
教學目標
1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
2.培養(yǎng)學生觀察潛力,提高他們分析問題和解決問題的潛力;
3.使學生初步養(yǎng)成正確思考問題的良好習慣.
教學重點和難點
一元一次方程解簡單的應用題的方法和步驟.
課堂教學過程設計
一、從學生原有的認知結構提出問題
在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個問題,我們來看下面這個例題.
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3.
答:某數(shù)為3.
(其次,用代數(shù)方法來解,教師引導,學生口述完成)
解法2:設某數(shù)為x,則有3x-2=x+4.
解之,得x=3.
答:某數(shù)為3.
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數(shù),列出方程并透過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一.
我們明白方程是一個內含未知數(shù)的等式,而等式表示了一個相等關系.因此對于任何一個應用題中帶給的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程.
本節(jié)課,我們就透過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟.
二、師生共同分析、研究一元一次方程解簡單應用題的方法和步驟
例2某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原先有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原先重量-運出重量=剩余重量)
3.若設原先面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原先有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42500,
所以x=50000.
答:原先有50000千克面粉.
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)
教師應指出:(1)這兩種相等關系的表達形式與“原先重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,能夠任意選取其中的一個相等關系來列方程;
(2)例2的解方程過程較為簡捷,同學應注意模仿.
依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結的狀況,教師總結如下:
(1)仔細審題,透徹理解題意.即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數(shù);
(2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系.(這是關鍵一步);
(3)根據(jù)相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案.那里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有好處.
例3(投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴格規(guī)范書寫格式)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.
其蘋果數(shù)為3×5+9=24.
答:第一小組有5名同學,共摘蘋果24個.
學生板演后,引導學生探討此題是否可有其他解法,并列出方程.
。ㄔO第一小組共摘了x個蘋果,則依題意,得)
三、課堂練習
1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?
2.我國城鄉(xiāng)居民1988年末的儲蓄存款到達3802億元,比1978年末的儲蓄存款的18倍還多4億元.求1978年末的`儲蓄存款。
3.某工廠女工人占全廠總人數(shù)的35%,男工比女工多252人,求全廠總人數(shù).
四、師生共同小結
首先,讓學生回答如下問題:
1.本節(jié)課學習了哪些資料?
2.列一元一次方程解應用題的方法和步驟是什么?
3.在運用上述方法和步驟時應注意什么?
依據(jù)學生的回答狀況,教師總結如下:
(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當選取變數(shù);找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;
(2)以上步驟同學應在理解的基礎上記憶.
五、作業(yè)
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產電視機20xx臺,這比前年10月產量的2倍還多150臺.這家工廠前年10月生產電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元.求得到一等獎與二等獎的人數(shù)。
小學數(shù)學一元一次方程教案2
教學目標:
知識目標:通過復習,加深一元一次方程、方程的解等概念的了解,會根據(jù)具體問題中的數(shù)量關系列出方程并求解。
能力目標:培養(yǎng)學生運用數(shù)學知識解決實際問題的能力。
情感目標:讓學生領悟數(shù)學在解決實際問題中的價值。
教學重點:
一元一次方程的解法和應用。
教學過程:
一、本章知識回顧:
1.有關概念:
。1)方程:含有未知數(shù)的等式叫做方程。
注意:方程必須滿足兩個條件:①含有未知數(shù);②是等式。(2)方程的'解:使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
。3)一元一次方程:只含有一個未知數(shù)并且未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1.注意:判斷一個方程是否是一元一次方程,滿足三個條件:①只含有一個未知數(shù);②未知數(shù)的次數(shù)是1;③未知數(shù)的系數(shù)不為0.
(4)方程的簡單變形規(guī)則:
、俜匠虄蛇叾技由匣驕p去同一個數(shù)或同一個整式,方程的解不變。
②方程兩邊都乘以或除以同一個不為0的數(shù),方程的解不變。
。5)移項:把等式一邊的某一項改變符號后移到另一邊,方程的解不變。
2.解一元一次方程的步驟:
①去分母;②去括號;③移項;④合并同類項;⑤系數(shù)化為列一元一次方程解
應用題的步驟:①審:弄清題意,分清已知量和未知量,明確個數(shù)量間的關系;②設:設出未知數(shù);③列:根據(jù)題中的等量關系列出方程;④解:求出方程的解;⑤答:檢驗所求的解是否符合題意,并寫出答案。
二、運用知識,訓練能力
1.下列方程中,哪些是一元一次方程,哪些不是?并說明理由。
(1)4+5x=11
(2)x+2y=5
(3)x2-5x+6=0
(4)1?xx=3
(5)x?1x2+3=1 2,已知方程2xm+1+3=5是一元一次方程,則m= --------- 3.解方程:x?33-x?12=某人乘船由A地順流而下到B地,然后又逆流而上到C地,共乘船4小時,已知船在靜水中的速度是每小時千米,水流的速度是每小時千米。若兩地相距10千米,求兩地的距離。
解:設兩地的距離為x千米,因C地位置沒有確定,所以需對C地位置進行分類討論:
。1)當C地在兩地之間時,由題意列方程得:------------------------------,解得--------------。
(2)當C地在兩地之外時,由題意列方程得:------------------------------,解得--------------。
故兩地的距離為--------------------。 5.小亮是一名七年級的學生,一次對方程
2x?1x4-?m4= -1去分母時,由于粗心,方程右邊的-1沒有乘4而得到錯解x=3,你能由此判斷出m的值嗎?如果能,請求出此方程正確的解。
三、合作探究,解決問題
復習題4、5、14、17
通過生生、師生合作,共同完成。
四、暢談收獲,分享成果
通過本節(jié)課的復習,你又有哪些新的收獲?
五、布置作業(yè)
復習題
小學數(shù)學一元一次方程教案3
教學目標:
1.使學生進一步掌握解一元一次方程的移項規(guī)律。
2.掌握帶有括號的一元一次方程的解法;
3.培養(yǎng)學生觀察、分析、轉化的能力,同時提高他們的.運算能力.
教學重點:
帶有括號的一元一次方程的解法.
教學難點:
解一元一次方程的移項規(guī)律.
教學手段:
引導——活動——討論
教學方法:
啟發(fā)式教學
教學過程
(一)、情境創(chuàng)設:
知識復習
(二)引導探究:帶括號的方程的解法。
例1.2(x-2)-3(4x-1)=9(1-x).
解:(怎樣才能將所給方程轉化為例1所示方程的形式呢?請學生回答)
去括號,得:
移項,得:
合并同類項,得:
系數(shù)化1,得:
遇有帶括號的一元一次方程的解法步驟:
(三)練習:(A)組
1.下列方程的解法對不對?若不對怎樣改正?
解方程2(x+3)-5(1-x)=3(x-1)
解:2x+3-5-5x=3x-1,
2x-5x-3x=3+5-3,
-6x=-1,
2.解方程:
(1)10y+7=12-5-3y;(2)2.4x-9.8=1.4x-9.
3.解方程:
(1)3(y+4)12;(2)2-(1-z)=-2;
(B)組
(1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);
(3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)
(四)教學小結
本節(jié)課都教學哪些內容?
哪些思想方法?
應注意什么?
【小學數(shù)學一元一次方程教案】相關文章:
小學數(shù)學的教案08-31
小學數(shù)學數(shù)學教案10-26
小學數(shù)學教案12-17
小學數(shù)學電子教案12-16
小學數(shù)學試講教案09-27
小學數(shù)學節(jié)約教案04-01
小學數(shù)學教案06-12
蘇教版小學數(shù)學教案12-17
小學數(shù)學十二冊教案12-16
小學數(shù)學《整理與復習》教案08-26