一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

§1-3無窮小量和無窮大量

時間:2023-05-01 00:37:01 資料 我要投稿
  • 相關(guān)推薦

§1-3無窮小量和無窮大量

§1-3 無窮小量和無窮大量

牛頓-萊布尼茨的微積分中說的“無窮小數(shù)”

同我們現(xiàn)在說的“無窮小量”是不同的。當(dāng)時說的由于理論基礎(chǔ)上的缺陷, 所以當(dāng)時就陷入了沒有結(jié)果的爭論之中。這也是當(dāng)時像羅爾(Rolle,M. 1652--1719)這樣的一些數(shù)學(xué)家們不接受微積分的原因之一。近代微積分的奠基人柯西從嚴(yán)處理了微積分的基本概念, 并把“無窮小量”說成是極限為,即稱變量y為無窮小量,若它在無限變化過程中,總有那么一個時...0的變量...

刻,在這個時刻以后,能夠使絕對值

y小于預(yù)先給出的任何正數(shù)。例如,

數(shù)列

1,n?

?)和當(dāng)x?0時的函數(shù)xn,nsinx,tanx等

都是無窮小量。無窮小量在微積分中起的作用相當(dāng)于常量數(shù)學(xué)中的“零”?墒,它不是常量[?(x)?0是一個特例],所以又不同于“零”。在某個極限過程(n??或x??)中的無窮小量就簡記成o(1)[讀作“小歐”,不能讀作零]。小歐“o”是牛頓當(dāng)初用過的記號.

定理1-1 limf(x)?C??f(x)?C?o(1)(x??).

x??

(充分必要條件)

特別,

函數(shù)f(x)在點(diǎn)c連續(xù)??f(x)?f(c)?o(1)(x?c) (※)

證 若limf(x)?C,則lim[f(x)?C]?0,即

x??

x??

f(x)?C?o(1)(x??) 或 f(x)?C?o(1)(x??)

反之,若f(x)?C?o(1)(x??),則

limf(x)?lim?C?o(1)??C?0?C

x??

x??

特別,當(dāng)函數(shù)f(x)在點(diǎn)c連續(xù)時,因?yàn)閘imf(x)?f(c),所以有結(jié)論(※).例如,當(dāng)x?c

x?c

時,

xn?cn?o(1), sinx?sinc?o(1), cosx?cosc?o(1)

1.無窮小量的運(yùn)算規(guī)則 利用極限的運(yùn)算規(guī)則,容易證明無窮小量的下述運(yùn)算規(guī)則:若o(1)是某一個極限過程(n??或x??)中的無窮小量,根據(jù)極限的運(yùn)算規(guī)則,則有 ⑴ O?o(1)

o(1)[其中O是有界變量(*),特別它可以是常數(shù)];

⑵ o(1)?o(1)?o(1),o(1)?o(1)?o(1). 它們與常量的運(yùn)算規(guī)則是不同的! ..............

2.無窮小量的比較 在某一個極限過程中,把某一個不取0值的無窮小量?看作“基本無窮小量”,而把另一個無窮小量?與基本無窮小量?相比較.若有極限

lim

?

?l(0?|l|???) ?

(*)

記號O讀作“大歐”,也不能讀作“零”。

48

§1-3 無窮小量和無窮大量

49

則在這個極限過程中,

⑴當(dāng)l?0時,稱?與?.特別,當(dāng)l?1時,稱?與?記成???或???.例如sinx?x(x?0),tanx?x(x?0),因?yàn)?/p>

sinxtanx

?1,lim?1

x?0xx?0x

⑵當(dāng)l?0時,?與?相比較,稱?為高階無窮小量,并記成??o(?).例如,當(dāng)x?0時,

lim

x?o(x),x2?o(x).

?lim例8

x?1x?1

?1?x?1

1?x?1

??

x?1

注意,其中當(dāng)x?

1時,??定理1-2 設(shè)?和??0在某一個極限過程中是等價無窮小量,則在這個極限過程中,

lim(???)?lim(???)(等價無窮小量替換)

[和或差的極限lim(???)不能用等價無窮小量替換!]

證 lim??????lim?

??

?1?lim??????lim?????. ??????????

x2x2

?,sinx2?x2,所以 例如,當(dāng)x?0時,因?yàn)閟in22

2

x??x222sin?2?1?cosx2???1 lim2?lim?lim

x?0xsinx2x?0x2sinx2x?0x2?x22

2

2

再如,當(dāng)x?

1時,因?yàn)?/p>

8就可以簡單地做成

x?1

?x??x?1

??x?1定理1-3 若??0在某一個極限過程中是基本無窮小量,則在這個極限過程中,有高階無窮小量的運(yùn)算規(guī)則:

⑴ O?o(?)?o(?)(O為有界變量,特別可以是常數(shù)); ⑵ o(1)???o(?),其中o(1)是無窮小量; ⑶ o(?)?o(?)?o(?);o(?)?o(?)?o(?). 證明是簡單的,譬如證⑶.根據(jù)極限的運(yùn)算規(guī)則,因?yàn)?/p>

2

lim

o(?)?o(?)

?

?lim

o(?)

?

?lim

o(?)

?

?0?0?0

49

所以;而因?yàn)?/p>

lim

所以o(?)?o(?)?o(?2).

o(?)?o(?)

?2

?o(?)o(?)??lim???0?0?0

?????

定理1- 4 若?和??0都是同一個極限過程中的無窮小量,則在這個極限過程中,

?????????o(?) [兩個等價無窮小量相差一個高階無窮小量]

證 (?)因?yàn)閘im

??

?1,根據(jù)定理1-1,?1?o(1),所以????o(1)????o(?). ??

???o(?)?lim?1?0?1,所以???. ??

例如,因?yàn)閟inx?x(x?0),所以可把它等價地寫成sinx?x?o(x)(x?0);同理,tanx?x?o(x)(x?0).

(?)因?yàn)閘im

3.無窮大量(無窮極限) 稱一個變量yy在無限變化過程中,總有那么一個時刻,在這個時刻以后,能夠使絕對值y大于預(yù)先給出的任何正數(shù),簡記成“y??”. 特別,若能夠使y大于預(yù)先給出的任何正數(shù),則稱變量y為正無窮大量,簡記成“y???”;若能夠使y小于預(yù)先給出的任何負(fù)數(shù),則稱變量y為負(fù)無窮大量,簡記成“y???”.

“無窮大量”與“無窮小量”是兩個對偶的概念,因此有下面對偶的結(jié)論.設(shè)變量y在某一個極限過程中不取數(shù)值0.

若變量y是無窮大量,則倒數(shù)是無窮大量.

具體到函數(shù)y?f(x),當(dāng)自變量x在某個極限過程x??中,若函數(shù)f(x)是無窮大量或正無窮大量或負(fù)無窮大量,就依次記成

就是無窮小量;反之,若變量y是無窮小量,則倒數(shù)就yy

limf(x)??,

x??

limf(x)???,

x??

limf(x)???

x??

請讀者注意,這些都是記號,有時口語上也說“極限是無窮大”,但它們沒有前面說的那種有窮極.....

限的含義和運(yùn)算規(guī)則!

a0?a1x???anxn

例9 求lim(an?0,bm?0).

x??b?bx???bxm

01m

解 當(dāng)n?m時,分子分母同除以xn?xm,則有

a0a1an?1

?????annn?1a0?a1x???anx lim?lim

x??b?bx???bxmx??b0bb01m?m1?1???m?1?bm

mxxx

n

50

§1-3 無窮小量和無窮大量

51

an?1a1?a?

lim?0?????an?ax??xnxn?1x???n

?

bm?1b1?b?bm

lim?0?????bm?x??xmxm?1x??

當(dāng)n?m時,分子分母同除以xm,則

a0a1an?1an

?????nmm?1m?n?1m?na0?a1x???anx lim?lim

x??b?bx???bxmx??001m?m1?1???m?1?bm

mxxx

a?1an?a?a0

lim?m?m1?1???mn??x??xxx?n?1xm?n?0???0 ?

bm?1b1bm?b0?

lim?m?m?1????bm?x??xxx??

b0?b1x???bmxm

當(dāng)n?m時,因?yàn)閘im?0,所以(倒數(shù)的極限)

x??a?ax???axn

01n

a0?a1x???anxn

lim?? x??b?bx???bxm

01m

根據(jù)提示做習(xí)題

1.求下面的極限(或者用例9的結(jié)果直接寫出答案,或者像例9那樣重新計(jì)算):

4x3?3x2?2x?1? ⑴ lim

x??5x3?7x2?10

3x2?2x?1

? ⑵ lim3

x??4x?3x2?10

6x5?5x3?x?1

? ⑶ lim

x??7x2?8x?9

答案:⑴

4

;⑵0;⑶?. 5

3x?52?3x2?52?2.limsin?????lim???? x??5x?3x??x?5x?3x?

答案:

3.設(shè)函數(shù)

2

?22?

?sin???xx?

6. 5

1?2

3sinx?xcos?,x?0

f(x)??

?(1?cosx)tanx

x?0?a,

問a為何值時,f(x)在點(diǎn)0連續(xù)?

51

1

(tanx?x)????? 提示 f(0)?limf(x)?lim

x?0x?0(1?cosx)tanx

3sinx?x2cos

答案:a?

3

. 2

52

【§1-3無窮小量和無窮大量】相關(guān)文章:

受益無窮作文11-10

其樂無窮的作文03-16

下棋趣無窮05-01

其樂無窮作文07-31

魅力無窮作文12-11

父愛無窮作文04-28

讀書,其樂無窮05-01

師恩無窮期作文07-14

“蛋”樂無窮作文12-15

榜樣的力量是無窮的作文12-02