一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

《二次函數(shù)》復(fù)習(xí)課教案

時(shí)間:2023-12-13 11:38:16 賽賽 教案 我要投稿
  • 相關(guān)推薦

《二次函數(shù)》復(fù)習(xí)課教案(通用11篇)

  作為一名人民教師,通常會被要求編寫教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。我們該怎么去寫教案呢?以下是小編收集整理的《二次函數(shù)》復(fù)習(xí)課教案,僅供參考,希望能夠幫助到大家。

《二次函數(shù)》復(fù)習(xí)課教案(通用11篇)

  《二次函數(shù)》復(fù)習(xí)課教案 1

  教學(xué)目標(biāo)

 。1)理解兩圓相切長等有關(guān)概念,掌握兩圓外公切線長的求法;

 。2)培養(yǎng)學(xué)生的歸納、總結(jié)能力;

 。3)通過兩圓外公切線長的求法向?qū)W生滲透“轉(zhuǎn)化”思想。

  教學(xué)重點(diǎn)

  理解兩圓相切長等有關(guān)概念,兩圓外公切線的求法。

  教學(xué)難點(diǎn)

  兩圓外公切線和兩圓外公切線長學(xué)生理解的不透,容易混淆。

  教學(xué)活動(dòng)設(shè)計(jì)

 。ㄒ唬⿲(shí)際問題(引入)

  很多機(jī)器上的傳動(dòng)帶與主動(dòng)輪、從動(dòng)輪之間的位置關(guān)系,給我們以一條直線和兩個(gè)同時(shí)相切的形象。(這里是一種簡單的數(shù)學(xué)建模,了解數(shù)學(xué)產(chǎn)生與實(shí)踐)

  兩圓的公切線概念

  1、概念:

  教師引導(dǎo)學(xué)生自學(xué)。給出兩圓的外公切線、內(nèi)公切線以及公切線長的定義:

  和兩圓都相切的直線,叫做兩圓的公切線。

  (1)外公切線:兩個(gè)圓在公切線的同旁時(shí),這樣的公切線叫做外公切線。

  (2)內(nèi)公切線:兩個(gè)圓在公切線的兩旁時(shí),這樣的公切線叫做內(nèi)公切線。

  (3)公切線的長:公切線上兩個(gè)切點(diǎn)的距離叫做公切線的`長。

  2、理解概念:

  (1)公切線的長與切線的長有何區(qū)別與聯(lián)系?

  (2)公切線的長與公切線又有何區(qū)別與聯(lián)系?

  (1)公切線的長與切線的長的概念有類似的地方,即都是線段的長。但公切線的長是對兩個(gè)圓來說的,且這條線段是以兩切點(diǎn)為端點(diǎn);切線長是對一個(gè)圓來說的,且這條線段的一個(gè)端點(diǎn)是切點(diǎn),另一個(gè)端點(diǎn)是圓外一點(diǎn)。

  (2)公切線是直線,而公切線的長是兩切點(diǎn)問線段的長,前者不能度量,后者可以度量。

  (三)兩圓的位置與公切線條數(shù)的關(guān)系

  組織學(xué)生觀察、概念、概括,培養(yǎng)學(xué)生的學(xué)習(xí)能力。添寫教材P143練習(xí)第2題表。

  (四)鞏固練習(xí)

  1、當(dāng)兩圓外離時(shí),外公切線、圓心距、兩半徑之差一定組成( )

  (A)直角三角形(B)等腰三角形(C)等邊三角形(D)以上答案都不對。

  此題考察外公切線與外公切線長之間的差別,答案(D)

  2、外公切線是指

  (A)和兩圓都祖切的直線(B)兩切點(diǎn)間的距離

  (C)兩圓在公切線兩旁時(shí)的公切線(D)兩圓在公切線同旁時(shí)的公切線

  直接運(yùn)用外公切線的定義判斷。答案:(D)

  3、教材P141練習(xí)(略)

  (六)小結(jié)(組織學(xué)生進(jìn)行)

  知識:兩圓的公切線、外公切線、內(nèi)公切線及公切線的長概念;

  能力:歸納、概括能力和求外公切線長的能力;

  思想:“轉(zhuǎn)化”思想。

 。ㄆ撸┳鳂I(yè):P151習(xí)題10,11。

  《二次函數(shù)》復(fù)習(xí)課教案 2

  教學(xué)目標(biāo):

  1、經(jīng)歷描點(diǎn)法畫函數(shù)圖像的過程;

  2、學(xué)會觀察、歸納、概括函數(shù)圖像的特征;

  3、掌握 型二次函數(shù)圖像的特征;

  4、經(jīng)歷從特殊到一般的認(rèn)識過程,學(xué)會合情推理。

  教學(xué)重點(diǎn):

  型二次函數(shù)圖像的描繪和圖像特征的歸納

  教學(xué)難點(diǎn):

  選擇適當(dāng)?shù)淖宰兞康闹岛拖鄳?yīng)的函數(shù)值來畫函數(shù)圖像,該過程較為復(fù)雜。

  教學(xué)設(shè)計(jì):

  一、回顧知識

  前面我們在學(xué)習(xí)正比例函數(shù)、一次函數(shù)和反比例函數(shù)時(shí)時(shí)如何進(jìn)一步研究這些函數(shù)的? 先(用描點(diǎn)法畫出函數(shù)的圖像,再結(jié)合圖像研究性質(zhì)。)

  引入:我們仿照前面研究函數(shù)的方法來研究二次函數(shù),先從最特殊的形式即 入手。因此本節(jié)課要討論二次函數(shù) ( )的圖像。

  板書課題:二次函數(shù) ( )圖像

  二、探索圖像

  1、 用描點(diǎn)法畫出二次函數(shù) 和 圖像

  (1) 列表

  引導(dǎo)學(xué)生觀察上表,思考一下問題:

  ①無論x取何值,對于 來說,y的值有什么特征?對于 來說,又有什么特征?

 、诋(dāng)x取 等互為相反數(shù)時(shí),對應(yīng)的y的`值有什么特征?

 。2) 描點(diǎn)(邊描點(diǎn),邊總結(jié)點(diǎn)的位置特征,與上表中觀察的結(jié)果聯(lián)系起來).

 。3) 連線,用平滑曲線按照x由小到大的順序連接起來,從而分別得到 和 的圖像。

  2、 練習(xí):在同一直角坐標(biāo)系中畫出二次函數(shù) 和 的圖像。

  學(xué)生畫圖像,教師巡視并輔導(dǎo)學(xué)困生。(利用實(shí)物投影儀進(jìn)行講評)

  3、二次函數(shù) ( )的圖像

  由上面的四個(gè)函數(shù)圖像概括出:

 。1) 二次函數(shù)的 圖像形如物體拋射時(shí)所經(jīng)過的路線,我們把它叫做拋物線,

 。2) 這條拋物線關(guān)于y軸對稱,y軸就是拋物線的對稱軸。

 。3) 對稱軸與拋物線的交點(diǎn)叫做拋物線的頂點(diǎn)。注意:頂點(diǎn)不是與y軸的交點(diǎn)。

 。4) 當(dāng) 時(shí),拋物線的開口向上,頂點(diǎn)是拋物線上的最低點(diǎn),圖像在x軸的上方(除頂點(diǎn)外);當(dāng) 時(shí),拋物線的開口向下,頂點(diǎn)是拋物線上的最高點(diǎn)圖像在x軸的 下方(除頂點(diǎn)外)。

 。ㄗ詈檬怯脦缀萎嫲逖菔,讓學(xué)生加深理解與記憶)

  三、課堂練習(xí)

  觀察二次函數(shù) 和 的圖像

  (1) 填空:

  拋物線

  頂點(diǎn)坐標(biāo)

  對稱軸

  位 置

  開口方向

  (2)在同一坐標(biāo)系內(nèi),拋物線 和拋物線 的位置有什么關(guān)系?如果在同一個(gè)坐標(biāo)系內(nèi)畫二次函數(shù) 和 的圖像怎樣畫更簡便?

  (拋物線 與拋物線 關(guān)于x軸對稱,只要畫出 與 中的一條拋物線,另一條可利用關(guān)于x軸對稱來畫)

  四、例題講解

  例題:已知二次函數(shù) ( )的圖像經(jīng)過點(diǎn)(-2,-3)。

 。1) 求a 的值,并寫出這個(gè)二次函數(shù)的解析式。

 。2) 說出這個(gè)二次函數(shù)圖像的頂點(diǎn)坐標(biāo)、對稱軸、開口方向和圖像的位置。

  練習(xí):

  (1)課本第31頁課內(nèi)練習(xí)第2題。

  (2) 已知拋物線y=ax2經(jīng)過點(diǎn)a(-2,-8)。

  《二次函數(shù)》復(fù)習(xí)課教案 3

  一、教材分析

  1、教材的地位及作用

  函數(shù)是一種重要的數(shù)學(xué)思想,是實(shí)際生活中數(shù)學(xué)建模的重要工具,二次函數(shù)的教學(xué)在初中數(shù)學(xué)教學(xué)中有著重要的地位。本節(jié)內(nèi)容的教學(xué),在函數(shù)的教學(xué)中有著承上啟下的作用。它既是對已學(xué)一次函數(shù)及反比例函數(shù)的復(fù)習(xí),又是對二次函數(shù)知識的延續(xù)和深化,為將來二次函數(shù)一般情形的教學(xué)乃至高中階段函數(shù)的教學(xué)打下基礎(chǔ),做好鋪墊。

  2、教學(xué)目標(biāo)

  (1) 掌握二此函數(shù)的概念并能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。[知識與技能目標(biāo)]

  (2)讓學(xué)生經(jīng)歷觀察、比較、歸納、應(yīng)用,以及猜想、驗(yàn)證的學(xué)習(xí)過程,使學(xué)生掌握類比、轉(zhuǎn)化等學(xué)習(xí)數(shù)學(xué)的方法,養(yǎng)成既能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣。[過程與方法目標(biāo)]

  (3) 讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)會與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅,[情感、態(tài)度、價(jià)值觀目標(biāo)]

  3、教學(xué)的重、難點(diǎn)

  重點(diǎn):二次函數(shù)的概念和解析式

  難點(diǎn):本節(jié)“合作學(xué)習(xí)”涉及的實(shí)際問題有的較為復(fù)雜,要求學(xué)生有較強(qiáng)的概括能力

  4、 學(xué)情分析

 、賹W(xué)生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。

 、趯W(xué)生個(gè)性活潑,積極性高,初步具有對數(shù)學(xué)問題進(jìn)行合作探究的意識與 能力。

 、鄢跞龑W(xué)生程度參差不齊,兩極分化已形成。

  二、教法學(xué)法分析

  1、教法(關(guān)鍵詞:情境、探究、分層)

  基于本節(jié)課內(nèi)容的特點(diǎn)和初三學(xué)生的年齡特征,我以“探究式”體驗(yàn)教學(xué)法和“啟發(fā)式”教學(xué)法 為主進(jìn)行教學(xué)。讓學(xué)生在開放的`情境中,在教師的 引導(dǎo)啟發(fā)下,同學(xué)的合作幫助下,通過探究發(fā)現(xiàn),讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成和應(yīng)用過程,加深對數(shù)學(xué)知識的理解。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時(shí)考慮到學(xué)生的個(gè)體差異,在教學(xué)的各個(gè)環(huán)節(jié)中進(jìn)行分層施教。

  2、學(xué)法(關(guān)鍵詞:類比、自主、合作)

  根據(jù)學(xué)生的思維特點(diǎn)、認(rèn)知水平,遵循“教必須以學(xué)為立足點(diǎn)”的教育理念,讓每一個(gè)學(xué)生自主參與整堂課的知識構(gòu)建。在各個(gè)環(huán)節(jié)中引導(dǎo)學(xué)生類比遷移,對照學(xué)習(xí)。以自主探索為主,學(xué)會合作交流,在師生互動(dòng)、生生互動(dòng)中讓每個(gè)學(xué)生動(dòng)口,動(dòng)手,動(dòng)腦,培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,使學(xué)生由“學(xué)會”變“會學(xué)”和“樂學(xué)”。

  3、教學(xué)手段

  采用多媒體教學(xué),直觀呈現(xiàn)拋物線和諧、對稱的美,激發(fā)學(xué)生的學(xué)習(xí) 興趣,參與熱情,增大教學(xué)容量,提高教學(xué)效率。

  三、教學(xué)過程

  完整的數(shù)學(xué)學(xué)習(xí)過程是一個(gè)不斷探索、發(fā)現(xiàn)、驗(yàn)證的過程,根據(jù)新課標(biāo)要求,根據(jù)“以人為本,以學(xué)定教”的教學(xué)理念,結(jié)合學(xué)生實(shí)際,制訂以下教學(xué)流程:

  (一).創(chuàng)設(shè)情境 溫故引新

  以提問的形式復(fù)習(xí)一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的定義,然后讓學(xué)生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:

  (1)你們喜歡打籃球嗎?

  (2)你們知道:投籃時(shí),籃球運(yùn)動(dòng)的路線是什么曲線?怎樣計(jì)算籃球達(dá)到最高點(diǎn)時(shí)的高度?

  從而引出課題《二次函數(shù)》,導(dǎo)入新課

  (二).合作學(xué)習(xí),探索新知

  為了更貼近生活,我先設(shè)計(jì)了兩個(gè)和實(shí)際生活有關(guān)的練習(xí)題。鼓勵(lì)學(xué)生積極發(fā)言,充分調(diào)動(dòng)學(xué)生的主動(dòng)性。然后出示課本上的兩個(gè)問題,在這個(gè)環(huán)節(jié)中,我讓學(xué)生在教師的引導(dǎo)下,先獨(dú)立思考,再以小組為單位交流成果,以培養(yǎng)學(xué)生自主探索、合作探究的能力。四個(gè)解析式都列出來后。讓學(xué)生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學(xué)生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學(xué)生的語言表達(dá)能力。

  學(xué)生在學(xué)習(xí)二次函數(shù)的概念時(shí)要求學(xué)生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個(gè)函數(shù)是不是二次函數(shù)

  (三)當(dāng)堂訓(xùn)練 鞏固提高

  由于學(xué)生層次不一,練習(xí)的設(shè)計(jì)充分考慮到學(xué)生的個(gè)體差異,滿足不同層次學(xué)生的學(xué)習(xí)需求,實(shí)現(xiàn)有“差異的”發(fā)展。讓每一個(gè)學(xué)生都感受成功的喜悅。我設(shè)計(jì)了3道練習(xí)題,其難易程度逐步提高,第一道題面對所有的學(xué)生,學(xué)生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強(qiáng)調(diào)該化簡的必須化簡后才可以判斷。第二道題讓學(xué)生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對二次函數(shù)概念的理解。最后一道題綜合性較強(qiáng),可以提高他們的綜合素質(zhì)。

  (四).小結(jié)歸納 拓展轉(zhuǎn)化

  讓學(xué)生用自己的語言談?wù)勛约旱氖斋@,可以將這一節(jié)的知識條理化,進(jìn)一步掌握二次函數(shù)的概念。

  (五)布置作業(yè) 學(xué)以致用

  作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識,檢驗(yàn)學(xué)生掌握知識的情況,發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中遺漏與不足。同時(shí),選做題具有總結(jié)性,可引導(dǎo)學(xué)生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系.

  四、評價(jià)分析

  本節(jié)課的教學(xué)從學(xué)生已有的認(rèn)知基礎(chǔ)出發(fā),以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,加深對所學(xué)知識的理解,從而突破重難點(diǎn)。整節(jié)課注重學(xué)生能力的培養(yǎng)和習(xí)慣的養(yǎng)成。由于學(xué)生的層次不一,我全程關(guān)注每一個(gè)學(xué)生的學(xué)習(xí)狀態(tài),進(jìn)行分層施教,因勢利導(dǎo),隨機(jī)應(yīng)變,適時(shí)調(diào)整教學(xué)環(huán)節(jié),,實(shí)現(xiàn)評價(jià)主體和形式的多樣化,把握評價(jià)的時(shí)機(jī)與尺度,激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達(dá)到最佳狀態(tài)。

  五、教學(xué)反思

  1.本節(jié)課通過學(xué)生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。

  2.本節(jié)課設(shè)計(jì)的以問題為主線,培養(yǎng)學(xué)生有條理思考問題的習(xí)慣和歸納概括能力,并重視培養(yǎng)學(xué)生的語言表達(dá)能力。同時(shí)不斷激發(fā)學(xué)生的探索精神,提高了學(xué)生分析和解決問題的能力。使學(xué)生有成功體驗(yàn)。

  《二次函數(shù)》復(fù)習(xí)課教案 4

  一、教材分析

  本節(jié)課在討論了二次函數(shù)y=a(x-h)2+k(a≠0)的圖像的基礎(chǔ)上對二次函數(shù)y=ax2+bx+c(a≠0)的圖像和性質(zhì)進(jìn)行研究。主要的研究方法是通過配方將y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)轉(zhuǎn)化,體會知識之間在內(nèi)的聯(lián)系。在具體探究過程中,從特殊的例子出發(fā),分別研究a>0和a<0的情況,再從特殊到一般得出y=ax2+bx+c(a≠0)的圖像和性質(zhì)。

  二、學(xué)情分析

  本節(jié)課前,學(xué)生已經(jīng)探究過二次函數(shù)y=a(x-h)2+k(a≠0)的圖像和性質(zhì),面對一般式向頂點(diǎn)式的轉(zhuǎn)化,讓學(xué)上體會化歸思想,分析這兩個(gè)式子的區(qū)別。

  三、教學(xué)目標(biāo)

  (一)知識與能力目標(biāo)

  1. 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點(diǎn)坐標(biāo)的過程;

  2. 能通過配方把二次函數(shù)y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,從而確定開口方向、頂點(diǎn)坐標(biāo)和對稱軸。

  (二)過程與方法目標(biāo)

  通過思考、探究、化歸、嘗試等過程,讓學(xué)生從中體會探索新知的方式和方法。

  (三)情感態(tài)度與價(jià)值觀目標(biāo)

  1. 經(jīng)歷求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點(diǎn)坐標(biāo)的過程,滲透配方和化歸的思想方法;

  2. 在運(yùn)用二次函數(shù)的知識解決問題的過程中,親自體會到學(xué)習(xí)數(shù)學(xué)知識的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)知識的興趣并獲得成功的體驗(yàn)。

  四、教學(xué)重難點(diǎn)

  1.重點(diǎn)

  通過配方求二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點(diǎn)坐標(biāo)。

  2.難點(diǎn)

  二次函數(shù)y=ax2+bx+c(a≠0)的圖像的性質(zhì)。

  五、教學(xué)策略與設(shè)計(jì)說明

  本節(jié)課主要滲透類比、化歸數(shù)學(xué)思想。對比一般式和頂點(diǎn)式的區(qū)別和聯(lián)系;體會式子的恒等變形的重要意義。

  六、教學(xué)過程

  教學(xué)環(huán)節(jié)(注明每個(gè)環(huán)節(jié)預(yù)設(shè)的時(shí)間)

  (一)提出問題(約1分鐘)

  教師活動(dòng):形如y=a(x-h)2+k(a≠0)的拋物線的對稱軸、頂點(diǎn)坐標(biāo)分別是什么?那么對于一般式y(tǒng)=ax2+bx+c(a≠0)頂點(diǎn)坐標(biāo)和對稱軸又怎樣呢?圖像又如何?

  學(xué)生活動(dòng):學(xué)生快速回答出第一個(gè)問題,第二個(gè)問題引起學(xué)生的思考。

  目的:由舊有的知識引出新內(nèi)容,體現(xiàn)復(fù)習(xí)與求新的關(guān)系,暗示了探究新知的方法。

  (二)探究新知

  1.探索二次函數(shù)y=0.5x2-6x+21的函數(shù)圖像(約2分鐘)

  教師活動(dòng):教師提出思考問題。這里教師適當(dāng)引導(dǎo)能否將次一般式化成頂點(diǎn)式?然后結(jié)合頂點(diǎn)式確定其頂點(diǎn)和對稱軸。

  學(xué)生活動(dòng):討論解決

  目的:激發(fā)興趣

  2.配方求解頂點(diǎn)坐標(biāo)和對稱軸(約5分鐘)

  教師活動(dòng):教師板書配方過程:y=0.5x2-6x+21=0.5(x2-12x+42)

  =0.5(x2-12x+36-36+42)

  =0.5(x-6)2+3

  教師還應(yīng)強(qiáng)調(diào)這里的配方法比一元二次方程的配方稍復(fù)雜,注意其區(qū)別與聯(lián)系。

  學(xué)生活動(dòng):學(xué)生關(guān)注黑板上的講解內(nèi)容,注意自己容易出錯(cuò)的地方。

  目的`:即加深對本課知識的認(rèn)知有增強(qiáng)了配方法的應(yīng)用意識。

  3.畫出該二次函數(shù)圖像(約5分鐘)

  教師活動(dòng):提出問題。這里要引導(dǎo)學(xué)生是否可以通過y=0.5x2的圖像的平移來說明該函數(shù)圖像。關(guān)注學(xué)生在連線時(shí)是否用平滑的曲線,對稱性如何。

  學(xué)生活動(dòng):學(xué)生通過列表、描點(diǎn)、連線結(jié)合二次函數(shù)圖像的對稱性完成作圖。

  目的:強(qiáng)化二次函數(shù)圖像的畫法。即確定開口方向、頂點(diǎn)坐標(biāo)、對稱軸結(jié)合圖像的對稱性完成圖像。

  4.探究y=-2x2-4x+1的函數(shù)圖像特點(diǎn)(約3分鐘)

  教師活動(dòng):教師提出問題。找學(xué)生板演拋物線的開口方向、頂點(diǎn)和對稱軸內(nèi)容,教師巡視,學(xué)生互相查找問題。這里教師要關(guān)注學(xué)生是否真正掌握了配方法的步驟及含義。

  學(xué)生活動(dòng):學(xué)生獨(dú)立完成。

  目的:研究a<0時(shí)一個(gè)具體函數(shù)的圖像和性質(zhì),體會研究二次函數(shù)圖像的一般方法。

  5.結(jié)合該二次函數(shù)圖像小結(jié)y=ax2+bx+c(a≠0)的性質(zhì)(約14分鐘)

  教師活動(dòng):教師將y=ax2+bx+c(a≠0)通過配方化成y=a(x-h)2+k(a≠0)的形式。確定函數(shù)頂點(diǎn)、對稱軸和開口方向并著重討論分析a>0和a<0時(shí),y隨x的變化情況、拋物線與y的交點(diǎn)以及函數(shù)的最值如何。

  學(xué)生活動(dòng):仔細(xì)理解記憶一般式中的頂點(diǎn)坐標(biāo)、對稱軸和開口方向;理解y隨x的變化情況。

  目的:體會由特殊到一般的過程。體驗(yàn)、觀察、分析二次函數(shù)圖像和性質(zhì)。

  6.簡單應(yīng)用(約11分鐘)

  教師活動(dòng):教師板書:已知拋物線y=0.5x2-2x+1.5,求這條拋物線的開口方向、頂點(diǎn)坐標(biāo)、對稱軸圖像和y軸的交點(diǎn)坐標(biāo)并確定y隨x的變化情況和最值。

  教師巡視,個(gè)別指導(dǎo)。教師在這里可以用兩種方法解決該問題:i)用配方法如例題所示;ii)我們可以先求出對稱軸,然后將對稱軸代入到原函數(shù)解析式求其函數(shù)值,此時(shí)對稱軸數(shù)值和所求出的函數(shù)值即為頂點(diǎn)的橫、縱坐標(biāo)。

  學(xué)生活動(dòng):學(xué)生先獨(dú)立完成,約3分鐘后討論交流,最后形成結(jié)論。

  目的:鞏固新知

  課堂小結(jié)(2分鐘)

  1. 本節(jié)課研究的內(nèi)容是什么?研究的過程中你遇到了哪些知識上的問題?

  2. 你對本節(jié)課有什么感想或疑惑?

  布置作業(yè)(1分鐘)

  1. 教科書習(xí)題22.1第6,7兩題;

  2. 《課時(shí)練》本節(jié)內(nèi)容。

  教學(xué)反思

  在教學(xué)中我采用了合作、體驗(yàn)、探究的教學(xué)方式。在我引導(dǎo)下,學(xué)生通過觀察、歸納出二次函數(shù)y=ax2+bx+c的圖像性質(zhì),體驗(yàn)知識的形成過程,力求體現(xiàn)“主體參與、自主探索、合作交流、指導(dǎo)引探”的教學(xué)理念。整個(gè)教學(xué)過程主要分為三部分:第一部分是知識回顧;第二部分是學(xué)習(xí)探究;第三部分是課堂練習(xí)。從當(dāng)堂的反饋和第二天的作業(yè)情況來看,絕大多數(shù)同學(xué)能掌握本節(jié)課的知識,達(dá)到了學(xué)習(xí)目標(biāo)中的要求。

  我認(rèn)為優(yōu)點(diǎn)主要包括:

  1.教態(tài)自然,能注重身體語言的作用,聲音洪亮,提問具有啟發(fā)性。

  2.教學(xué)目標(biāo)明確、思路清晰,注重學(xué)生的自我學(xué)習(xí)培養(yǎng)和小組合作學(xué)習(xí)的落實(shí)。

  3.板書字體端正,格式清晰明了,突出重點(diǎn)、難點(diǎn)。

  4.我覺的精彩之處是求一般式的頂點(diǎn)坐標(biāo)時(shí)的第二種方法,給學(xué)生減輕了一些負(fù)擔(dān),不一定非得配方或運(yùn)用公式求頂點(diǎn)坐標(biāo)。

  所以我對于本節(jié)課基本上是滿意的。但也有很多需要改進(jìn)的地方主要表現(xiàn)在:

  1.知識的生成過程體現(xiàn)的不夠具體,有些急于求成。在學(xué)生活動(dòng)中自己引導(dǎo)的較少,時(shí)間較短,討論的不夠積極;

  2.一般式圖像的性質(zhì)自己總結(jié)的較多,學(xué)生發(fā)言較少,有些知識完全可以有學(xué)生提出并生成,這樣的結(jié)論學(xué)生理解起來會更深刻;

  3.學(xué)生在回答問題的過程中我老是打斷學(xué)生。提問一個(gè)問題,學(xué)生說了一半,我就迫不及待地引導(dǎo)他說出下一半,有的時(shí)候是我替學(xué)生說了,這樣學(xué)生的思路就被我打斷了。破壞學(xué)生的思路是我們教師最大的毛病,此頑疾不除,教學(xué)質(zhì)量難以保證。

  4.合作學(xué)習(xí)的有效性不夠。正所謂:“水本無波,相蕩乃成漣漪;石本無火,相擊而生靈光!敝挥姓嬲炎灾、探究、合作的學(xué)習(xí)方式落到實(shí)處,才能培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能適應(yīng)現(xiàn)代社會發(fā)展的公民。

  重新去解讀這節(jié)課的話我會注意以上一些問題,再多一些時(shí)間給學(xué)生,讓他們?nèi)ンw驗(yàn),探究而后形成自己的知識。

  《二次函數(shù)》復(fù)習(xí)課教案 5

  教學(xué)目標(biāo):

  會用待定系數(shù)法求二次函數(shù)的解析式,能結(jié)合二次函數(shù)的圖象掌握二次函數(shù)的性質(zhì),能較熟練地利用函數(shù)的性質(zhì)解決函數(shù)與圓、三角形、四邊形以及方程等知識相結(jié)合的綜合題。

  重點(diǎn)難點(diǎn):

  重點(diǎn);用待定系數(shù)法求函數(shù)的解析式、運(yùn)用配方法確定二次函數(shù)的特征。

  難點(diǎn):會運(yùn)用二次函數(shù)知識解決有關(guān)綜合問題。

  教學(xué)過程:

  一、例題精析,強(qiáng)化練習(xí),剖析知識點(diǎn)

  用待定系數(shù)法確定二次函數(shù)解析式.

  例:根據(jù)下列條件,求出二次函數(shù)的解析式。

 。1)拋物線y=ax2+bx+c經(jīng)過點(diǎn)(0,1),(1,3),(-1,1)三點(diǎn)。

  (2)拋物線頂點(diǎn)P(-1,-8),且過點(diǎn)A(0,-6)。

 。3)已知二次函數(shù)y=ax2+bx+c的圖象過(3,0),(2,-3)兩點(diǎn),并且以x=1為對稱軸。

  (4)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過一次函數(shù)y=-3/2x+3的圖象與x軸、y軸的交點(diǎn);且過(1,1),求這個(gè)二次函數(shù)解析式,并把它化為y=a(x-h(huán))2+k的形式。

  學(xué)生活動(dòng):學(xué)生小組討論,題目中的四個(gè)小題應(yīng)選擇什么樣的函數(shù)解析式?并讓學(xué)生闡述解題方法。

  教師歸納:二次函數(shù)解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0)

 。2)頂點(diǎn)式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0)

  當(dāng)已知拋物線上任意三點(diǎn)時(shí),通常設(shè)為一般式y(tǒng)=ax2+bx+c形式。

  當(dāng)已知拋物線的頂點(diǎn)與拋物線上另一點(diǎn)時(shí),通常設(shè)為頂點(diǎn)式y(tǒng)=a(x-h(huán))2+k形式。

  當(dāng)已知拋物線與x軸的交點(diǎn)或交點(diǎn)橫坐標(biāo)時(shí),通常設(shè)為兩根式y(tǒng)=a(x-x1)(x-x2)

  強(qiáng)化練習(xí):已知二次函數(shù)的圖象過點(diǎn)A(1,0)和B(2,1),且與y軸交點(diǎn)縱坐標(biāo)為m。

 。1)若m為定值,求此二次函數(shù)的解析式;

 。2)若二次函數(shù)的圖象與x軸還有異于點(diǎn)A的另一個(gè)交點(diǎn),求m的取值范圍。

  二、提出問題

  某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價(jià)、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤最大?

  在這個(gè)問題中,可提出如下問題供學(xué)生思考并 回答:

  1.商品的'利潤與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?

  2.如果不降低售價(jià),該商品每件利潤是多少元?一天總的利潤是多 少元?

  3.若每件商品降價(jià)x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

  5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。

  將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:

  (1)y=-2x2+20x (0<x<10)

  將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:

  (2)y =-100x2+100x+20D (0≤x≤2)

  三、觀察;概括

  1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;

  (1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?

  (各有1個(gè))

  (2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?

  (分別是二次多項(xiàng)式 )

  (3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?

  (都是用自變量的二次多項(xiàng)式來表示的)

  (4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn) ?

  讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。

  2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng)。

  《二次函數(shù)》復(fù)習(xí)課教案 6

  學(xué)習(xí)目標(biāo):

  1、經(jīng)歷確定二次函數(shù)表達(dá)式 的過程,體會求二次函數(shù)表達(dá)式的思想方法;

  2、會用待定系數(shù)法確定二次函數(shù)表達(dá)式;

  3、通過學(xué)生自己的探索活動(dòng),培養(yǎng)數(shù)學(xué)應(yīng)用意識。

  學(xué)習(xí)重點(diǎn)

  用待定系數(shù)法確定二次函數(shù)表達(dá)式;

  學(xué)習(xí)難點(diǎn)

  根據(jù)條件用待定系數(shù)法確定二次函數(shù)表達(dá)式;

  學(xué)習(xí)過程:

  一、學(xué)前準(zhǔn)備

  1、敘述二次函數(shù)的表達(dá)式有哪幾種形式?

  2、敘述拋物線y=ax2 y=ax2+bx+c、y=a(x—h)2+k 的對稱軸與頂點(diǎn)坐標(biāo)。

  3、我們在確定一次函數(shù) 的關(guān)系式時(shí),通常需要 個(gè)獨(dú)立的條件:確定反比例函數(shù) 的關(guān)系式時(shí),通常只需要 個(gè)條件:如果要確定二次函數(shù) 的關(guān)系式,又需要 個(gè)條件 ?(學(xué)生思考討論后,回答)

  二、探究活動(dòng)

 。ㄒ唬 獨(dú)立思考解決問題

  某建筑物采用薄殼型屋頂,屋頂?shù)臋M截面形狀為一段拋物線。他的拱寬AB為6m,拱高CO為0。9m。試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,寫出這段拋物線所對應(yīng)的二次函數(shù)表達(dá)式

 。ǘ⿴熒骄 合作交流

  例1、已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,2)、B(1,0)、C(—2,3),求這個(gè)函數(shù)的表達(dá)式 。

 。◣熒餐接懹么ㄏ禂(shù)法求表達(dá)式的方法)

  例2、已知拋物線的頂點(diǎn)為(—1,—6),且該圖象經(jīng)過(2,3)求這個(gè)函數(shù)的表達(dá)式 。(說明用頂點(diǎn)式的必要性)

  (三)練一練

  根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的`關(guān)系式。

  (1)已知拋物線與x軸交于點(diǎn)M(—3,0)(5,0) 且與y軸交于點(diǎn)(0,—3)

 。2)已知圖象頂點(diǎn)在原點(diǎn),且圖象過點(diǎn)(2,8)

 。3)已知圖象頂點(diǎn)坐標(biāo)是(—1,—2),且圖象過點(diǎn)(1,10)

  三、學(xué)習(xí)體會

  1、本節(jié)課你有哪些收獲?你還有哪些疑問?

  2、你認(rèn)為老師上課過程中還有哪些須改進(jìn)的地方?

  3、預(yù)習(xí)時(shí)的疑問解決了嗎?

  四、自我測試

  1、已知拋物線與x軸交于點(diǎn)M(—1,0)、(2,0),且經(jīng)過點(diǎn)(1,2)

  求出二次函數(shù)的關(guān)系式。

  2、已知二次函數(shù) 的圖象經(jīng)過(1,0)與(2,5)兩點(diǎn)。

  求這個(gè)二次函數(shù)的解析式;

  3、已知拋物線經(jīng)過點(diǎn)(—1,—1)(0,—2)(1,1)

 。1) 求這個(gè)二次函數(shù)的解析式

  (2) 指出它的開口方向、對稱軸和頂點(diǎn)坐標(biāo)

 。3) 這個(gè)函數(shù)有最大值還是最小值?這個(gè)值是多少?

  《二次函數(shù)》復(fù)習(xí)課教案 7

  教學(xué)目標(biāo):

  讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。

  重點(diǎn)

  二次函數(shù)表達(dá)式的形式的選擇

  難點(diǎn)

  各種隱含條件的挖掘

  教法

  引導(dǎo)發(fā)現(xiàn)法

  教學(xué)過程:

  (一)診斷補(bǔ)償,情景引入:

  1、二次函數(shù)的一般式是什么

  2、二次函數(shù)的圖象及性質(zhì)

 。ㄏ茸寣W(xué)生復(fù)習(xí),然后提問,并做進(jìn)一步診斷)

 。ǘ﹩栴}導(dǎo)航,探究釋疑:

  一般地,函數(shù)關(guān)系式中有幾個(gè)獨(dú)立的系數(shù),那么就需要有相同個(gè)數(shù)的獨(dú)立條件才能求出函數(shù)關(guān)系式。例如:我們在確定一次函數(shù)的關(guān)系式時(shí),通常需要兩個(gè)立的條件:確定反比例函數(shù)的關(guān)系式時(shí),通常只需要一個(gè)條件:如果要確定二次函數(shù)的關(guān)系式,又需要幾個(gè)條件呢?

 。ㄈ┚v提煉,揭示本質(zhì):

  例1。某涵洞是拋物線形,它的截面如圖26。2。9所示,現(xiàn)測得水面寬1。6m,涵洞頂點(diǎn)O到水面的距離為2。4m,在圖中直角坐標(biāo)系內(nèi),涵洞所在的拋物線的函數(shù)關(guān)系式是什么?

  分析如圖,以AB的垂直平分線為y軸,以過點(diǎn)O的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時(shí),涵洞所在的拋物線的頂點(diǎn)在原點(diǎn),對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時(shí)只需拋物線上的一個(gè)點(diǎn)就能求出拋物線的函數(shù)關(guān)系式。

  解由題意,得點(diǎn)B的坐標(biāo)為(0。8,-2。4),

  又因?yàn)辄c(diǎn)B在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。

  例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。

 。1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,-1)、B(1,0)、C(-1,2);

 。2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);

 。3)已知拋物線與x軸交于點(diǎn)M(-3,0)(5,0)且與y軸交于點(diǎn)(0,-3);

 。4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4。

  分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個(gè)已知點(diǎn),可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(3)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(4)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時(shí)可知拋物線的對稱軸為x=3,再由與x軸兩交點(diǎn)間的距離為4,可得拋物線與x軸的兩個(gè)交點(diǎn)為(1,0)和(5,0),任選一個(gè)代入,即可求出a的'值。

  解:

 。1)設(shè)二次函數(shù)關(guān)系式為,由已知,這個(gè)函數(shù)的圖象過(0,-1),可以得到c= -1。又由于其圖象過點(diǎn)(1,0)、(-1,2)兩點(diǎn),可以得到

  解這個(gè)方程組,得a=2,b= -1。

  所以,所求二次函數(shù)的關(guān)系式是。

  (2)因?yàn)閽佄锞的頂點(diǎn)為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(diǎn)(0,1),可以得到解得。

  所以,所求二次函數(shù)的關(guān)系式是。

 。3)因?yàn)閽佄锞與x軸交于點(diǎn)M(-3,0)、(5,0),

  所以設(shè)二此函數(shù)的關(guān)系式為。

  又由于拋物線與y軸交于點(diǎn)(0,3),可以得到解得。

  所以,所求二次函數(shù)的關(guān)系式是。

  (4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學(xué)們自己完成。

  (四)題組訓(xùn)練,拓展遷移:

  1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。

 。1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,2)、(1,1)、(3,5);

  (2)已知拋物線的頂點(diǎn)為(-1,2),且過點(diǎn)(2,1);

 。3)已知拋物線與x軸交于點(diǎn)M(-1,0)、(2,0),且經(jīng)過點(diǎn)(1,2)。

  2、二次函數(shù)圖象的對稱軸是x= -1,與y軸交點(diǎn)的縱坐標(biāo)是–6,且經(jīng)過點(diǎn)(2,10),求此二次函數(shù)的關(guān)系式。

 。ㄎ澹┙涣髟u價(jià),深化知識:

  確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時(shí),可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點(diǎn)坐標(biāo)可利用此式來求。

 。2)頂點(diǎn)式:給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時(shí)可利用此式來求。

  (3)交點(diǎn)式:給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個(gè)交點(diǎn)、時(shí)可利用此式來求。

  本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(-1,12)、B(2,-3)

 。1)求該二次函數(shù)的關(guān)系式;

 。2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對稱軸。

  2、已知二次函數(shù)的圖象與一次函數(shù)的圖象有兩個(gè)公共點(diǎn)P(2,m)、Q(n,-8),如果拋物線的對稱軸是x= -1,求該二次函數(shù)的關(guān)系式

  《二次函數(shù)》復(fù)習(xí)課教案 8

  一、教學(xué)目的

  1.使學(xué)生初步理解二次函數(shù)的概念。

  2.使學(xué)生會用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

  3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):對二次函數(shù)概念的初步理解。

  難點(diǎn):會用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

  三、教學(xué)過程

  復(fù)習(xí)提問

  1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?

 。1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2 — 2。

  2.什么是一無二次方程?

  3.怎樣用找點(diǎn)法畫函數(shù)的圖象?

  新課

  1.由具體問題引出二次函數(shù)的定義。

  (1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。

 。2)已知一個(gè)矩形的周長是60m,一邊長是Lm,寫出這個(gè)矩形的面積S(m2)與這個(gè)矩形的一邊長L之間的函數(shù)關(guān)系式。

  (3)農(nóng)機(jī)廠第一個(gè)月水泵的產(chǎn)量為50臺,第三個(gè)月的產(chǎn)量y(臺)與月平均增長率x之間的'函數(shù)關(guān)系如何表示?

  解:(1)函數(shù)解析式是S=πR2;

 。2)函數(shù)析式是S=30L—L2;

 。3)函數(shù)解析式是y=50(1+x)2,即

  y=50x2+100x+50。

  由以上三例啟發(fā)學(xué)生歸納出:

 。1)函數(shù)解析式均為整式;

  (2)處變量的最高次數(shù)是2。

  我們說三個(gè)式子都表示的是二次函數(shù)。

  一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請注意這里b,c沒有限制,而a≠0。

  2.畫二次函數(shù)y=x2的圖象。

  《二次函數(shù)》復(fù)習(xí)課教案 9

  教學(xué)目標(biāo)

  掌握二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)個(gè)數(shù)與一元二次方程ax2+bx+c=0的解的情況之間的關(guān)系。

  重點(diǎn)、難點(diǎn):

  二次函數(shù)y=ax2+bx+c的圖象與一元二次方程ax2+bx+c=0的根之間關(guān)系的探索。

  教學(xué)過程:

  一、情境創(chuàng)設(shè)

  一次函數(shù)y=x+2的圖象與x軸的'交點(diǎn)坐標(biāo)

  問題1.任意一次函數(shù)的圖象與x軸有幾個(gè)交點(diǎn)?

  問題2.猜想二次函數(shù)圖象與x軸可能會有幾個(gè)交點(diǎn)?可以借助什么來研究?

  二、探索活動(dòng)

  活動(dòng)一觀察

  在直角坐標(biāo)系中任意取三點(diǎn)A、B、C,測出它們的縱坐標(biāo),分別記作a、b、c,以a、b、c為系數(shù)繪制二次函數(shù)y=ax2+bx+c的圖象,觀察它與x軸交點(diǎn)數(shù)量的情況;任意改變a、b、c值后,觀察交點(diǎn)數(shù)量變化情況。

  活動(dòng)二觀察與探索

  如圖1,觀察二次函數(shù)y=x2-x-6的圖象,回答問題:

  (1)圖象與x軸的交點(diǎn)的坐標(biāo)為A(,),B(,)

  (2)當(dāng)x=時(shí),函數(shù)值y=0。

  (3)求方程x2-x-6=0的解。

  (4)方程x2-x-6=0的解和交點(diǎn)坐標(biāo)有何關(guān)系?

  活動(dòng)三猜想和歸納

  (1)你能說出函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)個(gè)數(shù)的其它情況嗎?猜想交點(diǎn)個(gè)數(shù)和方程ax2+bx+c=0的根的個(gè)數(shù)有何關(guān)系。

  (2)一元二次方程ax2+bx+c=0的根的個(gè)數(shù)由什么來判斷?

  這樣我們可以把二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)、一元二次方程ax2+bx+c=0的實(shí)數(shù)根和根的判別式三者聯(lián)系起來。

  三、例題分析

  例1.不畫圖象,判斷下列函數(shù)與x軸交點(diǎn)情況。

  (1)y=x2-10x+25

  (2)y=3x2-4x+2

  (3)y=-2x2+3x-1

  例2.已知二次函數(shù)y=mx2+x-1

  (1)當(dāng)m為何值時(shí),圖象與x軸有兩個(gè)交點(diǎn)

  (2)當(dāng)m為何值時(shí),圖象與x軸有一個(gè)交點(diǎn)?

  (3)當(dāng)m為何值時(shí),圖象與x軸無交點(diǎn)?

  四、拓展練習(xí)

  1.如圖2,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B。

  (1)請寫出方程ax2+bx+c=0的根

  (2)列舉一個(gè)二次函數(shù),使其圖象與x軸交于(1,0)和(4,0),且適合這個(gè)圖象。

  2.列舉一個(gè)二次函數(shù),使其圖象開口向上,且與x軸交于(-2,0)和(1,0)

  五、小結(jié)

  這節(jié)課我們有哪些收獲?

  六、作業(yè)

  求證:二次函數(shù)y=x2+ax+a-2的圖象與x軸一定有兩個(gè)不同的交點(diǎn)。

  《二次函數(shù)》復(fù)習(xí)課教案 10

  教學(xué)目標(biāo):

  1、使學(xué)生能利用描點(diǎn)法正確作出函數(shù)y=ax2+b的圖象。

  2、讓學(xué)生經(jīng)歷二次函數(shù)y=ax2+b性質(zhì)探究的過程,理解二次函數(shù)y=ax2+b的性質(zhì)及它與函數(shù)y=ax2的關(guān)系。

  教學(xué)重點(diǎn)

  會用描點(diǎn)法畫出二次函數(shù)y=ax2+b的圖象,理解二次函數(shù)y=ax2+b的性質(zhì),理解函數(shù)y=ax2+b與函數(shù)y=ax2的相互關(guān)系。

  教學(xué)難點(diǎn):

  正確理解二次函數(shù)y=ax2+b的性質(zhì),理解拋物線y=ax2+b與拋物線y=ax2的關(guān)系。

  教學(xué)過程:

  一、提出問題導(dǎo)入新課

  1.二次函數(shù)y=2x2的.圖象具有哪些性質(zhì)?

  2.猜想二次函數(shù)y=2x2+1的圖象與二次函數(shù)y=2x2的圖象開口方向、對稱軸和頂點(diǎn)坐標(biāo)是否相同?

  二、學(xué)習(xí)新知

  1、問題1:畫出函數(shù)y=2x2和函數(shù)y=2x2+1的圖象,并加以比較

  問題2,你能在同一直角坐標(biāo)系中,畫出函數(shù)y=2x2與y=2x2+1的圖象嗎?

  同學(xué)試一試,教師點(diǎn)評。

  問題3:當(dāng)自變量x取同一數(shù)值時(shí),這兩個(gè)函數(shù)的函數(shù)值(既y)之間有什么關(guān)系?反映在圖象上,相應(yīng)的兩個(gè)點(diǎn)之間的位置又有什么關(guān)系?

  讓學(xué)生觀察兩個(gè)函數(shù)圖象,說出函數(shù)y=2x2+1與y=2x2的圖象開口方向、對稱軸相同,頂點(diǎn)坐標(biāo),函數(shù)y=2x2的圖象的頂點(diǎn)坐標(biāo)是(0,0),而函數(shù)y=2x2+1的圖象的頂點(diǎn)坐標(biāo)是(0,1)。

  師:你能由函數(shù)y=2x2的性質(zhì),得到函數(shù)y=2x2+1的一些性質(zhì)嗎?

  小組相互說說(一人記錄,其余組員補(bǔ)充)

  2、小組匯報(bào):分組討論這個(gè)函數(shù)的性質(zhì)并歸納:當(dāng)x<0時(shí),函數(shù)值y隨x的增大而減。划(dāng)x>0時(shí),函數(shù)值y隨x的增大而增大,當(dāng)x=0時(shí),函數(shù)取得最小值,最小值y=1。

  3、做一做

  在同一直角坐標(biāo)系中畫出函數(shù)y=2x2-2與函數(shù)y=2x2的圖象,再作比較,說說它們有什么聯(lián)系和區(qū)別?

  三、小結(jié)

  1、在同一直角坐標(biāo)系中,函數(shù)y=ax2+k的圖象與函數(shù)y=ax2的圖象具有什么關(guān)系?

  2、你能說出函數(shù)y=ax2+k具有哪些性質(zhì)?

  四、作業(yè): 在同一直角坐標(biāo)系中,畫出 (1)y=-2x2與y=-2x2-2;的圖像

  《二次函數(shù)》復(fù)習(xí)課教案 11

  教學(xué)目標(biāo):

  利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問題解決問題。

  利用已有二次函數(shù)的知識經(jīng)驗(yàn),自主進(jìn)行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問題,初步形成數(shù)學(xué)建模能力,解決一些簡單的實(shí)際問題。

  在探索中體驗(yàn)數(shù)學(xué)來源于生活并運(yùn)用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過合作學(xué)習(xí)獲得成功,樹立自信心。

  教學(xué)重點(diǎn)和難點(diǎn):

  運(yùn)用數(shù)形結(jié)合的思想方法進(jìn)行解二次函數(shù),這是重點(diǎn)也是難點(diǎn)。

  教學(xué)過程:

 。ㄒ唬┮耄

  分組復(fù)習(xí)舊知。

  探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的'圖象中,你能得到哪些信息?

  可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論:

 。1)如何畫圖

 。2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn)

 。3)所形成的三角形以及四邊形的面積

  (4)對稱軸

  從上面的問題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。

 。ǘ┬率冢

  1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點(diǎn)為點(diǎn)A,且與x軸交于點(diǎn)B、C;在拋物線上求一點(diǎn)E使SBCE= SABC。

  再探索:在拋物線y=x2+4x+3上找一點(diǎn)F,使BCE與BCD全等。

  再探索:在拋物線y=x2+4x+3上找一點(diǎn)M,使BOM與ABC相似。

  2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。

  例如:已知一拋物線的頂點(diǎn)坐標(biāo)是C(2,1)且與x軸交于點(diǎn)A、點(diǎn)B,已知SABC=3,求拋物線的解析式。

 。ㄈ┨岣呔毩(xí)

  根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境:

  讓班級中的上科院小院士來簡要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。

  讓學(xué)生在練習(xí)中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。

 。ㄋ模┳寣W(xué)生討論小結(jié)。

【《二次函數(shù)》復(fù)習(xí)課教案】相關(guān)文章:

《二次函數(shù)復(fù)習(xí)課》教學(xué)反思11-04

二次函數(shù)復(fù)習(xí)課教學(xué)反思08-21

二次函數(shù)復(fù)習(xí)課教學(xué)反思4篇08-22

《二次函數(shù)》應(yīng)用教案設(shè)計(jì)02-02

二次函數(shù)數(shù)學(xué)教案02-07

九年級數(shù)學(xué)二次函數(shù)復(fù)習(xí)課教學(xué)反思(精選13篇)07-04

《二次根式復(fù)習(xí)課》教學(xué)反思12-05

二次函數(shù)教學(xué)反思04-16

一次函數(shù)復(fù)習(xí)課教學(xué)反思10-18

《一次函數(shù)》復(fù)習(xí)課教學(xué)反思10-15