分數(shù)的基本性質(zhì)教案范文集合8篇
作為一名為他人授業(yè)解惑的教育工作者,就難以避免地要準(zhǔn)備教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。教案要怎么寫呢?以下是小編幫大家整理的分數(shù)的基本性質(zhì)教案8篇,希望對大家有所幫助。
分數(shù)的基本性質(zhì)教案 篇1
教學(xué)目標(biāo)
(一)理解和掌握分數(shù)的基本性質(zhì)。
(二)能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
(三)培養(yǎng)學(xué)生觀察、分析和抽象概括的能力,滲透事物是相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。
教學(xué)重點和難點
(一)理解和掌握分數(shù)的基本性質(zhì)。
(二)歸納分數(shù)的基本性質(zhì),運用性質(zhì)轉(zhuǎn)化分數(shù)。
教學(xué)用具
教具:投影片,三張相同的長方形紙,一面為白色,另一面分別給
學(xué)具:每位同學(xué)準(zhǔn)備三張相同的長方形紙片。
教學(xué)過程設(shè)計
(一)復(fù)習(xí)準(zhǔn)備
1.口答:(投影片)
根據(jù) 120÷30=4,不用計算直接說出結(jié)果:
(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。
2.說一說依據(jù)什么可以不用計算直接得出商的?
3.說出商不變的性質(zhì)。
教師:除法有商不變性質(zhì),分數(shù)與除法又有關(guān)系,分數(shù)有沒有類似的性質(zhì)呢?下面就來研究這個問題。
(二)學(xué)習(xí)新課
1.分數(shù)基本性質(zhì)。
(1)教師取出一張長方形白紙,說明這為單位“1”,再取出同樣的兩張白紙,重疊放在一起請學(xué)生觀察,問:三張紙重疊后完全重合,說明什么?(三個單位“ 1”同樣大)教師把三張紙分貼在黑板上。
教師請同學(xué)取出自己準(zhǔn)備的三張長方形紙,并比一比是不是同樣大。
教師:請分別把它們平均分成2份;4份,6份(折出來),并分別給其中的1份,2份和3份涂上顏色或畫上陰影。然后把涂了顏色的部分用分數(shù)表示出來。
學(xué)生口答后,老師把黑板上的紙片翻面,露出涂了色的一面,板書:
教師:請比較這三個分數(shù)的大?
你根據(jù)什么說這三個分數(shù)相等?
學(xué)生口答后老師用等號連結(jié)上面三個分數(shù)。
(2)教師:這幾個分數(shù)的分子和分母都不相同,但三個分數(shù)的大小是相等的,下面我們來研究在保持分數(shù)大小不變的情況下,分子分母的變化有沒有什么規(guī)律?
請同學(xué)觀察,思考和討論。投影出思考題:
如何?
結(jié)果如何?
變,那么分子,分母同時乘以4,乘以5,乘以6呢?規(guī)律是什么?
學(xué)生口答后,教師小結(jié)并板書:分數(shù)的分子和分母同時乘以相同的數(shù),分數(shù)大小不變。(留出“或者除以”的空位。)
的變化規(guī)律是什么?(學(xué)生小組討論后匯報)教師板書:
教師:試說一說這時分子、分母的.變化規(guī)律?
學(xué)生口答后老師小結(jié):分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)大小不變。板書補出“除以”。
教師:想一想,分數(shù)的分子、分母都乘以或除以0可以嗎?為什么?(不行。)
(3)請根據(jù)上面的研究,說一說你發(fā)現(xiàn)了什么規(guī)律?請概括地說一說。
學(xué)生口述分數(shù)基本性質(zhì)的內(nèi)容,老師把板書補充完整。
教師:這就是分數(shù)的基本性質(zhì),是這節(jié)課研究的問題。板書出課題:分數(shù)基本性質(zhì)。
請學(xué)生打開書讀兩遍。
教師:想一想,如何用整數(shù)除法中商不變的性質(zhì)說明分數(shù)基本性質(zhì)?(舉例說明)
用學(xué)生自己的例題說明后,用投影片再說明:
口答填空:(投影片)
2.把一個分數(shù)化成大小相等,而分子或分母是指定數(shù)的分數(shù)。
分子應(yīng)怎樣變化?誰隨著誰變?
化?誰隨著誰變?
教師:上面兩個分數(shù)的變化依據(jù)是什么?
(2)口答練習(xí):(學(xué)生口答,老師板書。)
教師:利用分數(shù)基本性質(zhì),可以把分數(shù)化成大小相等而分子或分母是指定數(shù)的分數(shù)。
(三)鞏固反饋
1.口答:(投影片)
2.在括號里填上“=”或“≠”。(投影)
3.在( )里填上適當(dāng)?shù)臄?shù)。(投影)
4.判斷正誤,并說明理由。
(四)課堂總結(jié)與課后作業(yè)
1.分數(shù)基本性質(zhì)。
2.把分數(shù)化成大小相同而分子或分母是指定數(shù)的分數(shù)的方法。
3.作業(yè):課本108頁練習(xí)二十三,1,2,4,5。
課堂教學(xué)設(shè)計說明
分數(shù)基本性質(zhì)是在分數(shù)大小不變的前提下研究分子、分母的變化規(guī)律。所以在教學(xué)過程中,抓住“變化”作為主線,設(shè)計思考題引導(dǎo)學(xué)生觀察、對比、分析,使學(xué)生在變化中找出規(guī)律、概括出分數(shù)的基本性質(zhì)。安排例2,是讓學(xué)生運用規(guī)律使分數(shù)產(chǎn)生變化。這樣,從兩方面方面加深學(xué)生對分數(shù)基本性質(zhì)的理解。
在學(xué)生掌握了分數(shù)基本性質(zhì)后,安排他們舉例討論,以溝通分數(shù)基本性質(zhì)和商不變性質(zhì)之間的內(nèi)在聯(lián)系,便于學(xué)生能把新舊知識融為一體。
在整個學(xué)習(xí)過程中都是學(xué)生活動為主,這樣有利于培養(yǎng)學(xué)生觀察、分析和抽象概括的能力。
新課教學(xué)分為兩部分。
第一部分學(xué)習(xí)分數(shù)基本性質(zhì)。分三層,通過學(xué)生活動,學(xué)生從直觀上認識到分子、分母不相同的分數(shù)有可能相等;研究分子、分母的變化規(guī)律;概括分數(shù)基本性質(zhì),并用商不變性質(zhì)來說明。
第二部分是應(yīng)用分數(shù)基本性質(zhì),使分數(shù)按要求進行變化。分兩層,根據(jù)分母需要,確定分子、分母需要擴大或縮小的倍數(shù);根據(jù)分子需要,確定分子、分母需要擴大或縮小的倍數(shù)。
板書設(shè)計
分數(shù)的基本性質(zhì)教案 篇2
教學(xué)目標(biāo) :
1、理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。
2、理解和掌握分數(shù)的基本性質(zhì)。
3、培養(yǎng)學(xué)生觀察、理解、獻魈驕考扒ㄒ頗芰Α?/SPAN>
4、較好實現(xiàn)知識教育與思想教育的有效結(jié)合。
教學(xué)重點 :理解和掌握分數(shù)的基本性質(zhì)。
教學(xué)難點 :能熟練、靈活地運用分數(shù)的.基本性質(zhì)。
教具準(zhǔn)備 :“分數(shù)基本性質(zhì)”課件,正方形紙片,彩色粉筆。
教學(xué)過程:
一、巧設(shè)伏筆、導(dǎo)入新課。
1、出示課件:120÷30的商是多少?
被除數(shù)和除都擴大3倍,商是多少?
被除數(shù)和除數(shù)都縮小10倍呢?(出示后學(xué)生回答,課件顯示答案)
2、在下面□里填上合適的數(shù)。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
、傧胍幌耄闶歉鶕(jù)什么填上面的數(shù)的?(生口答)
。ㄕn件:商不變的性質(zhì))
、谏滩蛔兊男再|(zhì)是什么?(生口答)
、鄢ㄅc分數(shù)之間有什么關(guān)系?
生答,師板書:被除數(shù)÷除數(shù)=被除數(shù)/除數(shù)
二、討論探究,學(xué)習(xí)新知。
1、課件出示:1÷2= (怎么寫)
①1/2與( )相等?你能想出哪些數(shù)?有辦法怎么讓它們相等嗎?
讓生合作探討。
、谏鍪敬鸢福1/2=2/4=4/8……
有選擇填入上數(shù)。
2、引導(dǎo)學(xué)生證明它們相等。
、俪稣n件:出示1個長方體,平均分成2份,得1/2,平均分成4份,得2/4……。
。ㄕn件演示)
上述演示讓學(xué)生感知后,問你發(fā)現(xiàn)了什么?(生討論)
、谠倌嫦蛩伎迹^察板書和課件。
問你又發(fā)現(xiàn)了什么?(生討論)
得到:(板書)分數(shù)的分子和分母同時乘上或者除以相同的數(shù),分數(shù)的大小不變。
3、驗證、補充、強調(diào)
、俪鍪2/5=2×2/5=4/5,對嗎?(驗證分數(shù)的基本性質(zhì)),為什么?強調(diào)“同時”(在黑板板書上用彩筆勾劃強調(diào))。
②出示3/4=3×3/4×4=9/16,對嗎?為什么?強調(diào)“相同的數(shù)”。
、塾疫吜惺叫袉幔繛槭裁?3/4=3×0/4×0=?補充:(0除外)板書,并出示課件補充。
、軞w納出上述板書為“分數(shù)的基本性質(zhì)”(課題)。
4、信息反饋、糾正、鞏固。
、倥袛啵ǔ鍪菊n件)
A、分數(shù)的分子,分母都乘上或除以相同的數(shù),分數(shù)的大小不變。
B、把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。
C、3/4的分子乘上3,分母除以3,分數(shù)的大小不變。
D、10/24=10÷2/24÷2=10×3/24×3 ( )
完成后,強調(diào)重點,加以鞏固。
②完成課本108頁例2(學(xué)生嘗試練習(xí))
強調(diào)運用了什么性質(zhì)?課件:“分數(shù)的基本性質(zhì)”醒目強調(diào)。
三、實踐練習(xí),信息綜合
1、練一練
、3/5=3×( )/5×( )=9/( )
②7/8=( )/48
、4÷18=( )/( )=4×5/18×( )=2/( )
2、練習(xí)二十二1—3題。
四、課堂總結(jié)、整體感知。
。ㄔ谛畔⒕C合后,重點選擇性小結(jié),形成整體),這節(jié)課我們學(xué)習(xí)了什么內(nèi)容?可以應(yīng)用在什么地方?這與我們學(xué)習(xí)過的什么性質(zhì)有聯(lián)系?
五、發(fā)散鞏固、自主選擇。
想一想:(選擇一道你喜歡的題做)
課件:①與1/2相等的分數(shù)有多少個?想象一下,把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)。
②9/24和20/32哪能一個數(shù)大一些,你能講出判斷的依據(jù)嗎
分數(shù)的基本性質(zhì)教案 篇3
教學(xué)目的:
理解分數(shù)的基本性質(zhì),并了解它與除法中商不變的規(guī)律之間的聯(lián)系。
2.理解和掌握分數(shù)的基本性質(zhì)。
3.較好實現(xiàn)知識教育與思想教育的有效結(jié)合。
教學(xué)難點:
理解和掌握分數(shù)的基本性質(zhì),并運用分數(shù)的基本性質(zhì)解決問題,進一步加深分數(shù)與除法之間的關(guān)系。
教學(xué)準(zhǔn)備:
板書有關(guān)習(xí)題的幻燈片。
教學(xué)過程:
一、復(fù)習(xí)
1.出示
在括號里填上適當(dāng)?shù)臄?shù):
指名說一說結(jié)果,并說一說你是根據(jù)什么填的?
二、課堂練習(xí):
1.自主練習(xí)第4題。
學(xué)生先獨立做,教師巡視,并個別指導(dǎo),集體訂正。
教師板書題目中的線段,指名讓學(xué)生板演。
在直線那些分數(shù)用同一個點表示是什么意思?(就是問哪幾個分數(shù)相等。)
怎樣找出相等的分數(shù)?
讓學(xué)生自己找。集體訂正是要求學(xué)生說一說你是根據(jù)什么找出相等的分數(shù)的?
然后要求學(xué)生在書上把這幾個相應(yīng)的點找出來。指名板演。
2.自主練習(xí)第5題。
先讓學(xué)生獨立做,教師巡視。個別指導(dǎo)。
指名說一說你的結(jié)果,并說一說你是根據(jù)什么填的。重點要求學(xué)生說清楚利用分數(shù)的基本性質(zhì)來進行填空。
教師根據(jù)學(xué)生的'回答選擇幾個題目進行板書。
3.自主練習(xí)第6題。
先讓學(xué)生獨立做。教師巡視并個別指導(dǎo)。注意差生中出現(xiàn)的問題。
集體訂正。指名說一說自己的計算過程和結(jié)果。
教師根據(jù)學(xué)生的回答選擇幾個題目進行板書。
4.自主練習(xí)第7題。
學(xué)生獨立做。教師要求有困難的學(xué)生分組討論,教師個別指導(dǎo)。
集體訂正。指名說一說自己的計算過程。教師注意要求學(xué)生說清楚計算的根據(jù)和理由。
5.自主練習(xí)第8題。
學(xué)生先獨立做。
集體訂正時,教師先要求學(xué)生說一說可以用哪些方法來比較這些分數(shù)的大?哪種方法最好?
分數(shù)的基本性質(zhì)教案 篇4
教學(xué)內(nèi)容:
人教版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》五年級(下冊)75—78頁。
設(shè)計思路:
《分數(shù)的基本性質(zhì)》是人教版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》五年級(下冊)第四單元《分數(shù)的意義和性質(zhì)》的第三節(jié)內(nèi)容。它是在學(xué)生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行學(xué)習(xí)的。這節(jié)課的教學(xué)重點是理解和掌握分數(shù)的基本性質(zhì),并能運用分數(shù)的基本性質(zhì)解決實際問題。教材共安排了兩道例題、“做一做1、2題”等。教學(xué)中創(chuàng)設(shè)學(xué)生熟悉的情景,組織學(xué)生自主活動,進行主動探究,體會知識的形成過程,體驗學(xué)習(xí)的快樂。通過鼓勵學(xué)生大膽猜想,讓學(xué)生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學(xué)主線的“猜想”,開展自主、探究式學(xué)習(xí),以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應(yīng)用于實踐解決簡單的實際問題,做到學(xué)以致用,發(fā)展學(xué)生思維,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)生樂于探究的人生態(tài)度。
教學(xué)目標(biāo):
1.通過教學(xué)理解和掌握分數(shù)的基本性質(zhì),能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù),再應(yīng)用這一規(guī)律解決簡單的實際問題。
2.引導(dǎo)學(xué)生在參與觀察、比較、猜想、驗證等學(xué)習(xí)活動過程中,有條件、有根據(jù)的思考、探究問題,培養(yǎng)學(xué)生的抽象概括能力。
3.滲透初步的辯證唯物主義思想教育,使學(xué)生收到數(shù)學(xué)思想方法的熏陶,培養(yǎng)探究的學(xué)習(xí)態(tài)度。
教學(xué)重點:
理解和掌握分數(shù)的基本性質(zhì)。
教學(xué)難點:
應(yīng)用分數(shù)的基本性質(zhì)解決實際問題。
教學(xué)方法:
直觀演示法、討論法等。
學(xué)法:
合作交流、自主探究。
教學(xué)準(zhǔn)備:
每位學(xué)生準(zhǔn)備三張同樣大小的正方形(或長方形)的紙片;教師:長方形(或正方形)的紙片、PPT課件等。
教學(xué)過程:
一.創(chuàng)設(shè)情景,激發(fā)興趣
。ㄕn件出示)1.120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?
2.說一說:(1)商不變的性質(zhì)是什么?(2)分數(shù)與除法的關(guān)系是什么?
( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )
二.大膽猜想,揭示課題
學(xué)生大膽猜想:在除法里有商不變的性質(zhì),在分數(shù)里會不會有類似的性質(zhì)存在呢?(生答:有。┻@個性質(zhì)是什么呢?
隨著學(xué)生的回答,教師板書課題:分數(shù)的基本性質(zhì)。
三 .探索研究,驗證猜想
1. 動手操作,驗證性質(zhì)。
(1)學(xué)生拿出三張同樣大小的正方形(或長方形)紙片,分別平均分成4份、8份、12
份,并分別給其中的1份、2份、3份涂上色,把涂色部分用分數(shù)表示出來。 圖(略)????引導(dǎo)學(xué)生觀察、思考:你發(fā)現(xiàn)了什么?
(2)小組合作:①觀察、分析、比較在組內(nèi)交流你的發(fā)現(xiàn)。
、诤献鹘涣鳎魇慵阂。
123③選代表全班匯報、交流,師相機板書:4812
123(3)合作討論: 為什么相等? 4812
、僖孕〗M為單位思考討論:(引導(dǎo))它們的分子、分母各是按照什么規(guī)律變化的? ②觀察它們的分子、分母的變化規(guī)律,在組內(nèi)用自己的話說一說。
2.分組匯報,歸納性質(zhì)。
a.從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學(xué)生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
。ǜ鶕(jù)學(xué)生回答
b.從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?
。ǜ鶕(jù)學(xué)生的回答)
c.有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?
d.綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?
。4)引導(dǎo)學(xué)生概括出分數(shù)的基本性質(zhì),回應(yīng)猜想。
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質(zhì)中要規(guī)定“零除外”?
。5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學(xué)生回答,在相應(yīng)的字下面點上著重號。
師生共同讀出黑板上板書的分數(shù)基本性質(zhì)(要求關(guān)鍵的字詞要重讀)。
3.慧眼掃描(下列的式子是否正確?為什么?)(課件出示)
33×263(1) ==(生: 的分子與分母沒有同時乘以2,分數(shù)的大小改變。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)1212÷6212
的大小改變。) 11×331==(生:的分子乘以3,而分母除以3,沒有同時乘或除以,1212÷3412(3)
分數(shù)的大小改變。) 22×x2x(4)==(生:x在這里代表任意數(shù),當(dāng)x=0時,分數(shù)無意義。) 55×x5x
四.回歸書本,探源獲知
1.瀏覽課本第75—78頁的內(nèi)容。
2.看了書,你又有什么收獲?還有什么疑問嗎?(指名匯報、交流)
3.分數(shù)的基本性質(zhì)與商不變性質(zhì)的比較。
(1)小組合作:討論分數(shù)的基本性質(zhì)與商不變性質(zhì)的異同。
(2)小組內(nèi)交流。
(3)選代表全班交流、匯報。
(4)小結(jié)歸納:分數(shù)的基本性質(zhì)與商不變性質(zhì)內(nèi)容相同,只是名稱不同罷了!
4.自主學(xué)習(xí)并完成例2,請二名學(xué)生說出思路。
五.鞏固深化,拓展思維(PPT演示文稿出示下列題目)
1.想一想,填一填。
33×( )988÷( )() 55×( )( )2424÷( )3
學(xué)生口答后,要求說出是怎樣想的?
2.在下面( )內(nèi)填上合適的數(shù)。
要求:后二題采取師生對出數(shù)的游戲形式進行,如先由教師出分子,再讓學(xué)生對出分母,也可以先由學(xué)生出分母,再讓教師對出分子。
3.思維訓(xùn)練(選擇你喜愛的一道題完成)
3(1)的分子加上6,要使分數(shù)的大小不變,分母應(yīng)加上多少? 5
。2)1/a=7/b(a、b是自然數(shù),且不為0),當(dāng)a=1,2,3,4??時,b分別等于幾?
討論:a與b之間的'關(guān)系是怎樣的?為什么會存在這樣的關(guān)系?依據(jù)是什么?
。3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不變的分數(shù)。
思考:分數(shù)的分母相同了,有什么作用?揭示學(xué)習(xí)分數(shù)的基本性質(zhì)的重要性,鼓勵學(xué)生學(xué)好、用好。
六.全課小結(jié)
本節(jié)課你收獲了什么?同桌交流分享你獲取知識的快樂!(匯報全班交流)
七.布置作業(yè)
P77—78練習(xí)十四第1、5、8題。
教學(xué)反思
“分數(shù)的基本性質(zhì)”是在學(xué)生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的基礎(chǔ)上進行學(xué)習(xí)的。這節(jié)課用“猜想——驗證——反思”的方式學(xué)習(xí)分數(shù)的基本性質(zhì),是學(xué)生在大問題背景下的一種研究性學(xué)習(xí)。這不僅對學(xué)生提出了挑戰(zhàn),而且對教師也提出了挑戰(zhàn)。教學(xué)中創(chuàng)設(shè)學(xué)生熟悉的情景,組織學(xué)生自主活動,進行主動探究,體會知識的形成過程,體驗學(xué)習(xí)的快樂。通過鼓勵學(xué)生大膽猜想,讓學(xué)生動手操作、觀察、分析、比較、討論、合作交流等探究活動,圍繞牽動教學(xué)主線的“猜想”,開展自主、探究式學(xué)習(xí),以驗證自己的猜想,發(fā)現(xiàn)、總結(jié)、概括出“分數(shù)的基本性質(zhì)” ,并應(yīng)用于實踐解決簡單的實際問題,做到學(xué)以致用,發(fā)展學(xué)生思維,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)生樂于探究的人生態(tài)度。
本節(jié)課教學(xué)設(shè)計突出的特點是學(xué)法的設(shè)計。從“創(chuàng)設(shè)情境、激發(fā)興趣;大膽猜想、揭示課題;探索研究、驗證猜想;回歸書本、探源獲知;鞏固深化、拓展思維”到“全課小結(jié)”每一個環(huán)節(jié)完全是為學(xué)生自主探究、合作交流學(xué)習(xí)而設(shè)計的。通過教學(xué)總結(jié)了自己的得與失如下:
1. 創(chuàng)設(shè)情境,可以更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)生有了這樣的學(xué)習(xí)興趣,我想這節(jié)課已經(jīng)成功了一半。因為興趣是最好的老師!
2.學(xué)生在操作中大膽猜想。
新課標(biāo)積極倡導(dǎo)學(xué)生 “主動參與、樂于探究、勤于思考”,以培養(yǎng)學(xué)生獲取知識、分析和解決問題的能力。因此我由學(xué)生的猜想入手,可以最大限度的調(diào)動學(xué)生“驗證自己猜想”的積極性和主動性,接下來通過學(xué)生:動手操作、觀察、比較、分析、討論、合作交流、探究等活動都是為了驗證學(xué)生自己的猜想,這些環(huán)節(jié)充分發(fā)揮了學(xué)生的主動性、積極性,從而凸顯學(xué)生在學(xué)習(xí)中的主體地位。教師在教學(xué)過程成為學(xué)生學(xué)習(xí)的引導(dǎo)者、支持者、服務(wù)者。同時創(chuàng)設(shè)猜想的情境,學(xué)生通過動手操作、觀察、比較、分析、討論、合作交流的探究方式來經(jīng)歷數(shù)學(xué),獲得感性經(jīng)驗,進而理解所學(xué)知識,完成知識創(chuàng)造過程。并且也為學(xué)生多彩的思維、創(chuàng)設(shè)良好的平臺,由于學(xué)生的經(jīng)歷不同,認識問題的角度不同,促使他們解決問題的策略多樣化,使生生、師生評價在價值觀上都得到了發(fā)展。
3.學(xué)生在自主探索中科學(xué)驗證。
分數(shù)的基本性質(zhì)教案 篇5
教學(xué)前的思考:
一、一則Flash動畫故事引入:從前有座山,山里有座廟,廟里有個老和尚和一個小和尚,哦!不對,是三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學(xué)們,你知道哪個和尚吃的多嗎?---教師播放這則故事為學(xué)生提供“猜想”素材!安孪搿Ⅱ炞C”不但是科學(xué)研究的方法,也是一種很好的數(shù)學(xué)學(xué)習(xí)方法。由此我聯(lián)想到“性質(zhì)”的學(xué)習(xí)過程是否也可以讓學(xué)生在猜想、驗證中主動生成。
二、學(xué)生動手操作,用事實說明,作好新知鋪墊:在揭題前,我設(shè)計了讓學(xué)生動手操作的方法,用三個同樣大小的圓折紙、涂色,來調(diào)動學(xué)生的多種感觀,充分感知數(shù)學(xué)事實,引導(dǎo)學(xué)生觀察、思考,激發(fā)學(xué)生的求知欲,活躍課堂氣氛,為“驗證”“性質(zhì)”作好鋪墊。
三、得出結(jié)論后,滲透“形式與實質(zhì)”的辯證觀點:揭示“性質(zhì)”后,教師讓學(xué)生回顧故事內(nèi)容,驗證“猜想”到底哪個和尚吃的多,從形式上看矮和尚吃的多,但比較的事實說明吃的一樣多。教師再一次列舉生活中的事例說明“形式與實質(zhì)”的辯證觀點。
教學(xué)設(shè)計:
一 故事提供“猜想”素材:Flash動畫故事引入.(教師出示課件)
師:今天老師很高興和同學(xué)們在一起共同學(xué)習(xí),同學(xué)們心情怎樣?
生:高興!
師: 老師給大家?guī)砹艘粋禮物,請同學(xué)們仔細欣賞。(教師出示Flash動畫故事,學(xué)生欣賞。同時教師提出欣賞要求,)
師:(欣賞后)同學(xué)們,你知道哪個和尚吃的多嗎?
生1:胖和尚吃的多。
生2:矮和尚吃的多。
……
師:到底誰回答得對呢?上完這節(jié)課你們一定能得到準(zhǔn)確的答案.(通過欣賞為學(xué)生提供素材,設(shè)懸念,留給學(xué)生獨立思考的空間)
二 用事實“驗證”,完整性質(zhì)。
1.實際操作列等式證實分數(shù)大小相等。
師:請同學(xué)們以小組為單位,拿出三個大小相等的圓來,分別用陰影部分表示每個圓的
(教師觀察,學(xué)生小組合作,有平均分的,有涂色的,小組成員配合默契)
師:比較一下陰影部分的大小,結(jié)果怎樣?陰影部分相等,說明這三個分數(shù)怎樣?
生:陰影部分的大小相等。
師:陰影部分相等說明這三個分數(shù)怎樣?
生:三個分數(shù)相等。
(隨著學(xué)生的回答,老師將板書的三個分數(shù)用“=”連接。)
2.觀察課件證實分數(shù)大小相等。
師:(出示課件)老師有三個同樣大小的長方形,誰能用分數(shù)表示出黃色部分呢?
師:這三個分數(shù)所表示的長度怎樣?這又說明了什么?
(隨著學(xué)生回答老師在三個分數(shù)間用“=”連接。)
3.初步概括分數(shù)基本性質(zhì).
師:仔細觀察兩個等式,每個等式的三個分數(shù)什么變了?什么沒變?
生:第一個等式中的三個分數(shù)分子、分母都變了,但分數(shù)的大小沒變。(師進行評價)
師:同學(xué)們從左到右觀察第一個等式,想一下,這三個分數(shù)的分子、分母怎樣變化才保證了分數(shù)的大小不變的?
(教師請同學(xué)們小組討論,學(xué)生各抒己見,爭論不休,氣氛活躍。)
師:誰能用一句話把這個變化規(guī)律敘述出來呢?(師指名口述)
生1:從左往右看,分數(shù)的分子、分母同時擴大了,也就是分子分母都乘了一個相同的數(shù),但三個分數(shù)的大小沒有變。(生2進行了補充)
師:你們觀察的真仔細!請大家給點掌聲好嗎?
(學(xué)生掌聲起,激情高長,課堂教學(xué)充滿活力。)
師:(出示課件)請看大屏幕,老師是這樣敘述的“分數(shù)的分子、分母都乘上同一個數(shù),分數(shù)大小不變”。
師:同學(xué)們從左到右仔細觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?誰能用一句話把這個變化規(guī)律敘述出來?
(小組討論后,同法讓學(xué)生小結(jié)規(guī)律,并請同學(xué)給予評價,讓學(xué)生抒發(fā)自己的見解,體現(xiàn)課堂教學(xué)的民主化。然后教師在課件中補充“或除以”三個字。)
4、完整分數(shù)基本性質(zhì):
師:(出示課件)請同學(xué)們填空:
(教師請一位會操作鼠標(biāo)的同學(xué)在課件中填空)
師:第3題( )里可以填多少個數(shù)?第4題呢?
生:可以填無數(shù)個。
師:( )里填任何數(shù)都行嗎?哪個數(shù)不行?(學(xué)生交流后老師指名回答)
生:不能填零。
師:為什么不能填零?
生:分數(shù)的分母不能為零。
(教師對學(xué)生的回答進行評價)
師:所以我們總結(jié)的這條規(guī)律必須加上一個條件“零除外”
(教師在課件中填上“零除外”三個紅色的字,以便引起學(xué)生的注意。)
師:這個變化規(guī)律就是“分數(shù)的基本性質(zhì)”。(指名照課件主讀出性質(zhì))
三 深入理解分數(shù)基本性質(zhì)
1.學(xué)生自學(xué),深入理解性質(zhì)。
師:請同學(xué)們把書翻到108頁,自讀分數(shù)的基本性質(zhì)。
師歸問:分數(shù)的.基本性質(zhì)里哪幾個詞比較重要?為什么“都”和“相同”很重要?為什么“分數(shù)大小不變”也很重要?為什么“零除外”也很重要?
生:因為都乘上或除以相同的數(shù)(0除外),分數(shù)的大小才不會變化。(同學(xué)評價)
2.學(xué)生獨立完成做一做1。(完成后小組內(nèi)互相評價)
3.找出與
相等的分數(shù):
(教師出示課件,請一位同學(xué)在課件中連線,教師進行評價)
4.請同學(xué)們自學(xué)并完成例2、(教師巡視,個別進行輔導(dǎo))
……
四 照應(yīng)Flash動畫故事,滲透“形式與實質(zhì)”的辯證觀點
教師在黑板上出示自制的三個同樣大小的圓餅
師:現(xiàn)在誰知道三個和尚,誰吃的多呢?(學(xué)生爭先恐后的想回答老師提出的問題)
生:三個和沿吃的一樣多。
師:同學(xué)們以后思考問題一定要多動腦筋,了解實質(zhì)后才能得出正確答案,我們不能從形式上看著事物去做出判斷。
……
五 課堂小結(jié):這節(jié)課你有什么收獲?(學(xué)生板書課題)
教學(xué)后的感悟:
1.教學(xué)的整個過程是學(xué)生親自驗證的過程,通過“驗證”學(xué)生感受了數(shù)學(xué)的嚴謹性。設(shè)計以“猜想--判斷--觀察--驗證--概括--深化--提高”的環(huán)節(jié),把知識的形成過程展現(xiàn)在學(xué)生的面前,使學(xué)生在掌握分數(shù)的基本性質(zhì)的同時,感知到數(shù)學(xué)知識的形成過程,在這一過程中注意滲透學(xué)生自學(xué)方法、解決問題的策略、體會數(shù)學(xué)知識與生活的緊密聯(lián)系,同時教給學(xué)生學(xué)會學(xué)習(xí),學(xué)會思考的方法。在師生共同協(xié)作的過程中,達到課堂教學(xué)方法的最優(yōu)化,提高了課堂教學(xué)效益。
2.猜想素材有利于激發(fā)學(xué)生主動學(xué)習(xí)的興趣和熱情,有利于學(xué)生思維的碰撞,開啟了學(xué)生發(fā)自內(nèi)心的探索學(xué)習(xí)。
3.教學(xué)中取舍教材、取舍手段,著眼于學(xué)生的學(xué)習(xí)。教學(xué)中既運用了信息技術(shù),又把傳統(tǒng)教學(xué)手段有機地結(jié)合,讓資源充分、有效地發(fā)揮作用,優(yōu)化教師的教學(xué)手段,提高課堂教學(xué)效率。
分數(shù)的基本性質(zhì)教案 篇6
教學(xué)目標(biāo)
1、進一步理解分數(shù)基本性質(zhì)的意義,掌握約分的方法。
2、促進學(xué)生初步形成約分的一般技能技巧,約分(約成最簡分數(shù))的正確率90%。
教學(xué)重難點約成最簡分數(shù)
教學(xué)準(zhǔn)備:分數(shù)卡片口算卡片
教學(xué)過程
一、自主回顧
回顧一下對約分的`理解情況
突出三點:用分子分母的公因數(shù)同時去除;約分的形式;約成最簡分數(shù)。
師:什么是最簡分數(shù)?
說一說。
二、鞏固練習(xí)
師分數(shù)卡片判斷
1、找朋友:找出和相等的分數(shù)。(七個小矮人身上的分數(shù)分別是下列分數(shù))
你是怎樣尋到的?說說自己的理由好么?
2、能用不同的分數(shù)表示下面各題的商嗎?
練習(xí)十一第8題
師:我們在剛剛學(xué)習(xí)分數(shù)和除法的關(guān)系時,只會用表示2÷8,現(xiàn)在我們還可以用來表示?,我們的進步啊,這就是學(xué)習(xí)的魅力。
師:你能寫出不同的除法算式嗎?
。剑ǎ拢ǎ剑ǎ拢ǎ
你能說出幾個除法的算式?
這些算式之間有什么聯(lián)系?
3、快樂學(xué)習(xí)超市
超市畫面快樂套餐1快樂套餐2
快樂套餐1:比一比○○0.4
計算并化簡+=-=
在()填上最簡分數(shù)20分=()時
快樂套餐2、3同上。
。ǚ纸M練習(xí)小組代表匯報整合了練習(xí)十一10至14題)
4、集中練習(xí)
把0.5化成分數(shù)問問自己這個分數(shù)是最簡分數(shù)嗎?你會把它化成最簡分數(shù)嗎?
分母是10的最簡分數(shù)有幾個?
請你提出一個類似的問題。
課堂作業(yè)
練習(xí)十一第9題,12、13、14題各自選2個
課后練習(xí):完成練習(xí)冊上的相應(yīng)練習(xí)。
分數(shù)的基本性質(zhì)教案 篇7
教學(xué)目的
1.使學(xué)生理解和掌握分數(shù)的基本性質(zhì),能應(yīng)用“性質(zhì)”解決一些簡單問題.
2.培養(yǎng)學(xué)生觀察、分析、思考和抽象、概括的能力.
3.滲透“形式與實質(zhì)”的辯證唯物主義觀點,使學(xué)生受到思想教育.
教學(xué)過程
一、談話.
我們已經(jīng)學(xué)習(xí)了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、
整數(shù)的互化方法.今天我們繼續(xù)學(xué)習(xí)分數(shù)的有關(guān)知識.
二、導(dǎo)入新課.
(一)教學(xué)例1.
出示例1:用分數(shù)表示下面各圖中的陰影部分,并比較它們的大。
1.分別出示每一個圓,讓學(xué)生說出表示陰影部分的分數(shù).
。1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
。2)同樣大的圓,陰影部分占圓的幾分之幾?
。3)同樣大的圓,陰影部分用分數(shù)表示是多少?
2.觀察比較陰影部分的大。
。1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等.)
。2)陰影部分的大小相等,可以用等號連接起來.(把圖上陰影部分畫上等號)
3.分析、推導(dǎo)出表示陰影部分的分數(shù)的大小也相等:
。1)4幅圖中陰影部分的大小相等.那么,表示這4 幅圖的4個分數(shù)的大小怎么樣呢?
。ㄟ@4個分數(shù)的大小也相等)
(2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來).
4.觀察、分析相等的分數(shù)之間有什么關(guān)系?
。1)觀察 轉(zhuǎn)化成 , 的分子、分母發(fā)生了什么變化?
。 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍.)
。2)觀察
(二)教學(xué)例2.
出示例2:比較 的大。
1.出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù).
2.觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大。
從數(shù)軸上可以看出:
3.觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律.
。1)這三個分數(shù)從形式上看不同,但是它們實質(zhì)上又都相等.
。ń處煱鍟 )
(2)你們分析一下, 、 各用什么樣的方法就都可以轉(zhuǎn)化成 了呢?
三、抽象概括出分數(shù)的基本性質(zhì).
1.觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?
“分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變.”(板書)
2.為什么要“零除外”?
3.教師小結(jié):這就是今天這節(jié)課我們學(xué)習(xí)的內(nèi)容:“分數(shù)的基本性質(zhì)”
。ò鍟骸盎拘再|(zhì)”)
4.誰再說一遍什么叫分數(shù)的基本性質(zhì)?
教師板書字母公式:
四、應(yīng)用分數(shù)基本性質(zhì)解決實際問題.
1.請同學(xué)們回憶,分數(shù)的基本性質(zhì)和我們以前學(xué)過的哪一個知識相類似?
。ê统ㄖ猩滩蛔兊男再|(zhì)相類似.)
。1)商不變的性質(zhì)是什么?
。ǔㄖ校怀龜(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變.)
。2)應(yīng)用商不變的性質(zhì)可以進行除法簡便運算,可以解決小數(shù)除法的運算.
2.分數(shù)基本性質(zhì)的應(yīng)用:
我們學(xué)習(xí)分數(shù)的基本性質(zhì)目的是加深對分數(shù)的認識,更主要的是應(yīng)用這一知識去解
決一些有關(guān)分數(shù)的問題.
3.教學(xué)例3.
例3 把 和 化成分母是12而大小不變的分數(shù).
板書:
教師提問:
。1) ?為什么?依據(jù)什么道理?
。 ,因為分母2乘上6等于12,要使分數(shù)的'大小不變,分子1也要乘上6.所以, )
(2)這個“6”是怎么想出來的?
。ㄟ@樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)
。3) ?為什么?依據(jù)的什么道理?
。 ,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以, )
(4)這個“2”是怎么想出來的?
(這樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應(yīng)是新分子的2倍,所以新的分子應(yīng)是10÷2=5)
五、課堂練習(xí).
1.把下面各分數(shù)化成分母是60,而大小不變的分數(shù).
2.把下面的分數(shù)化成分子是1,而大小不變的分數(shù).
3.在( )里填上適當(dāng)?shù)臄?shù).
4. 的分子增加2,要使分數(shù)的大小不變,分母應(yīng)該增加幾?你是怎樣想的?
5.請同學(xué)們想出與 相等的分數(shù).
規(guī)律:這個分數(shù)的值是 ,然后只要按自然數(shù)的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數(shù)個.
六、課堂總結(jié).
今天這節(jié)課我們學(xué)習(xí)了什么知識?懂得了一個什么道理?分數(shù)的基本性質(zhì)是什么?這是學(xué)習(xí)分數(shù)四則運算的基礎(chǔ),一定要掌握好.
七、課后作業(yè).
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.
2.在下面的括號里填上適當(dāng)?shù)臄?shù).
分數(shù)的基本性質(zhì)教案 篇8
教學(xué)目的:
1、理解分數(shù)的基本性質(zhì);
2、初步掌握分數(shù)性質(zhì)的應(yīng)用;
3、培養(yǎng)學(xué)生觀察——探索——抽象——概括的能力;
4、滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點。
教學(xué)重點:
從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。
教學(xué)難點:
形成對分數(shù)的基本性質(zhì)的統(tǒng)一認知。
教學(xué)準(zhǔn)備:多媒體,自制演示教具。
教學(xué)過程:
一、激趣引新:
1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節(jié)課我們就來解決這個問題。
2、在下面的()中填上合適的數(shù)。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同學(xué)們現(xiàn)在已經(jīng)能用分數(shù)的知識來解決問題了。
二、啟發(fā)引導(dǎo),探索新知。
1、下面是六年級三個班的同學(xué)到三塊同樣大小面積的正方形地里去種樹,哪個班種植的面積大一些呢?
通過圖形的平移、旋轉(zhuǎn)等方法看出三個班種植面積一樣大。
2.引導(dǎo)觀察得出結(jié)論。
。1)通過拼圖得到1/2=2/4=4/8
(2)引導(dǎo)觀察、比較,提出問題:分子,分母都不相同,它們的大小為什么相同呢?
。3)引導(dǎo)思考探索變化規(guī)律:
從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同討論,引導(dǎo)學(xué)生抽象概括出分數(shù)的基本性質(zhì):
。1)怎么做能使分數(shù)的分子和分母發(fā)生變化,而分數(shù)的`大小都不變呢?
。2)變化時同時乘或除以小數(shù)可以嗎?
(3)0可以嗎?3/4=3×0/4×0=?(分數(shù)的分母不能為0,在除法里0不能作除數(shù),分子和分母都乘或除以相同的數(shù),這個數(shù)不能是0。)
歸納分數(shù)基本性質(zhì):分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
4.學(xué)習(xí)分數(shù)的基本性質(zhì)以后,感覺過去我們學(xué)過類似的性質(zhì)是什么呢?(商不變的性質(zhì))
。1)練習(xí)在□中填上合適的數(shù)
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
。2)你能把1÷2這個除法算式改寫成分數(shù)形式?
你能用今天所學(xué)的知識解決老爺爺分地的問題嗎?(學(xué)生交流、匯報)
5.組織練習(xí)
。1)判斷:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()
。2)畫一畫、填一填
。3)填空
1/2=1×()/2×()=6/()
10/24=10○()/24○()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少種填法)
6.通過練習(xí)在此性質(zhì)中哪些是關(guān)鍵詞?
7.鞏固練習(xí)(選擇你喜歡的一題來做)
。1)與1/2相等的分數(shù)有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)?
。2)9/24和20/32哪一個數(shù)大一些,你能講出判斷的依據(jù)嗎?
三、課堂總結(jié)
今天這節(jié)課同學(xué)們學(xué)了分數(shù)的基本性質(zhì),有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學(xué)們把今天所學(xué)的知識運用到今后的學(xué)習(xí)和生活中去,做一個生活的有心人。
四、課堂作業(yè):練習(xí)十四第1——3題。
板書設(shè)計:
分數(shù)的基本性質(zhì)
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分數(shù)的分子和分母同時乘以一個不為0的數(shù)分數(shù)的大小不變
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分數(shù)的分子和分母同時除以一個不為0的數(shù)分數(shù)的大小不變
綜上所述分數(shù)的基本性質(zhì)是:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
【分數(shù)的基本性質(zhì)教案】相關(guān)文章:
分數(shù)的基本性質(zhì)教案01-20
分數(shù)的基本性質(zhì)09-29
《分數(shù)的基本性質(zhì)》09-29
分數(shù)的基本性質(zhì)(一)09-29
分數(shù)的基本性質(zhì)(二)09-29
分數(shù)的基本性質(zhì)數(shù)學(xué)教案08-26