- 相關推薦
數學教案-用公式解一元二次方程12.1 用公式解一元二次方程(一)
12.1 用公式解一元二次方程(一)
一、素質教育目標
(一)知識教學點:1.使學生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數、一次項系數及常數項.
(二)能力訓練點:1.通過一元二次方程的引入,培養(yǎng)學生分析問題和解決問題的能力;2.通過一元二次方程概念的學習,培養(yǎng)學生對概念理解的完整性和深刻性.
(三)德育滲透點:由知識來源于實際,樹立轉化的思想,由設未知數列方程向學生滲透方程的思想方法,由此培養(yǎng)學生用數學的意識.
二、教學重點、難點
1.教學重點:一元二次方程的意義及一般形式.
2.教學難點 :正確識別一般式中的“項”及“系數”.
三、教學步驟
(一)明確目標
1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學生拿出事先準備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學生的實際操作,為解決下面的問題奠定基礎,同時培養(yǎng)學生手、腦、眼并用的能力.
2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應該怎樣求出截去的小正方形的邊長?
教師啟發(fā)學生設未知數、列方程,經整理得到方程x2-70x+825=0,此方程不會解,說明所學知識不夠用,需要學習新的知識,學了本章的知識,就可以解這個方程,從而解決上述問題.
板書:“第十二章一元二次方程”.教師恰當的語言,激發(fā)學生的求知欲和學習興趣.
(二)整體感知
通過章前引例和節(jié)前引例,使學生真正認識到知識來源于實際,并且又為實際服務,學習了一元二次方程的知識,可以解決許多實際問題,真正體會學習數學的意義;產生用數學的意識,調動學生積極主動參與數學活動中.同時讓學生感到一元二次方程的解法在本章中處于非常重要的地位.
(三)重點、難點的學習及目標完成過程
1.復習提問
(1)什么叫做方程?曾學過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊.
2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應怎樣剪?
引導,啟發(fā)學生設未知數列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.
整式方程:方程的兩邊都是關于未知數的整式,這樣的方程稱為整式方程.
一元二次方程:只含有一個未知數,且未知數的最高次數是2,這樣的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定義的.一元二次方程中的“一元”指的是“只含有一個未知數”,“二次”指的是“未知數的最高次數是2”.“元”和“次”的概念搞清楚則給定義一元三次方程等打下基礎.一元二次方程的定義是指方程進行合并同類項整理后而言的.這實際上是給出要判定方程是一元二次方程的步驟:首先要進行合并同類項整理,再按定義進行判斷.
3.練習:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
【數學教案-用公式解一元二次方程12.1 用公式解一元二次方程一】相關文章:
用數形結合法解一元二次方程05-01
數學一元二次方程公式教學03-25
運用因式分解法解一元二次方程04-30
數學一元二次方程公式教學3篇(精華)03-25
一元二次方程教案01-15
《一元二次方程》數學教案(精選10篇)06-26
《一元二次方程》數學教案(精選12篇)12-25
一元二次方程的解法教案12-30
一元二次方程教學反思04-05
一元二次方程的解法教學反思04-04