初中數(shù)學(xué)教案精選15篇
作為一名優(yōu)秀的教育工作者,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案有助于順利而有效地開展教學(xué)活動。我們該怎么去寫教案呢?以下是小編為大家收集的初中數(shù)學(xué)教案,歡迎大家分享。
初中數(shù)學(xué)教案1
一、檢查反饋
本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面,F(xiàn)將檢查情況總結(jié)如下教案方面的特點與不足。
特點:
1、絕大多數(shù)教案設(shè)計完整,教學(xué)重點、難點突出,設(shè)置得當(dāng),緊緊圍繞新課標(biāo),例如:劉興華、孫菊、江文李雅芳等能突出對學(xué)科素養(yǎng)的高度關(guān)注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側(cè)重對自己教法和學(xué)生學(xué)法的指導(dǎo),并且還能對自己不得法的'教學(xué)手段、方式、方法進(jìn)行深刻地解剖,能很好地體現(xiàn)課堂教學(xué)的反思意識,反思深刻、務(wù)實、有針對性。
2、注重選擇恰當(dāng)?shù)慕虒W(xué)方法,注重在靈活多樣的教學(xué)方法中培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3、教案能體現(xiàn)多媒體教學(xué)手段,注重培養(yǎng)學(xué)生的探究精神和創(chuàng)新能力。
不足:
1、教案后的教學(xué)反思不夠認(rèn)真、不夠詳細(xì),沒能對本堂課的得與失作出記錄與小結(jié),從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業(yè)方面的特點與不足
特點:
1、能按進(jìn)度布置作業(yè),作業(yè)設(shè)置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴(yán)格、細(xì)致,能夠反映學(xué)生作業(yè)中的錯誤做法及糾正措施。
3、學(xué)生在書寫方面有很大進(jìn)步。從檢查可以發(fā)現(xiàn)教師對學(xué)生作業(yè)的書寫格式有明確的要求。
不足:
1、對于學(xué)生書寫的工整性,還需加強教育。
2、教師在批閱作業(yè)時,要稍細(xì)心些,發(fā)現(xiàn)問題就讓學(xué)生當(dāng)時改正,學(xué)生也就會逐漸養(yǎng)成做事認(rèn)真的習(xí)慣。
初中數(shù)學(xué)教案2
教學(xué)目標(biāo):
1、理解切線的判定定理,并學(xué)會運用。
2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。
教學(xué)重點:切線的判定定理和切線判定的方法。
教學(xué)難點:切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時掌握不好并極容易忽視一.
教學(xué)過程:
一、復(fù)習(xí)提問
【教師】問題1.怎樣過直線l上一點P作已知直線的垂線?
問題2.直線和圓有幾種位置關(guān)系?
問題3.如何判定直線l是⊙O的切線?
啟發(fā):(1)直線l和⊙O的公共點有幾個?
(2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系 如何?
學(xué)生答完后,教師強調(diào)(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)
再啟發(fā):若把距離OA理解為 OA⊥l,OA=r;把點A理解為半徑在圓上的端點 ,請同學(xué)們試將上面定理用新的理解改寫成新的命題,此命題就 是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)
二、引入新課內(nèi)容
【學(xué)生】命題:經(jīng)過半徑的在圓上的端點且垂直于半 徑的直線是圓的切線。
證明定理:啟發(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已 知、求證,分析證明思路,閱讀課本P60。
定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
定理的證明:已知:直線l經(jīng)過半徑OA的外端點A,直線l⊥OA,
求證:直線l是⊙O的切線
證明:略
定理的符號語言:∵直線l⊥OA,直線l經(jīng)過半徑OA的外端A
∴直線l為⊙O的切線。
是非題:
。1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )
。2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )
三、例題講解
例1、已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB。
求證:直線AB是⊙O的切線。
引導(dǎo)學(xué)生分析:由于AB過⊙O上的點C,所以連結(jié)OC,只要證明AB⊥OC即可。
證明:連結(jié)OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直線AB經(jīng)過半徑OC的外端C
∴直線AB是⊙O的切線。
練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。
練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。
求證:CD是⊙O的切線。
例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。
求證:DE是⊙O的切線。
思考題:在Rt△ABC中,∠B=90°,∠A的`平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?
四、小結(jié)
1.切線的判定定理。
2.判定一條直線是圓的切線的方法:
、俣x:直線和圓有唯一公共點。
、跀(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d = r)。[
、矍芯的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。
3.證明一條直線是圓的切線的輔助線和證法規(guī)律。
凡是已知公共點(如:直線經(jīng)過圓上的點;直線和圓有一個公共點;)往往是"連結(jié)"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。
五、布置作業(yè):略
《切線的判定》教后體會
本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過學(xué)生自我活動得到數(shù)學(xué)結(jié)論作為教學(xué)重點,呈現(xiàn)學(xué)生真實的思維過程為教學(xué)宗旨,進(jìn)行教學(xué)設(shè)計,目的在于讓學(xué)生對知識有一個本質(zhì)的、有效的理解。本節(jié)課切實反映了平時的教學(xué)情況,為前來調(diào)研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:
成功之處:
一、 教材的二度設(shè)計順應(yīng)了學(xué)生的認(rèn)知規(guī)律
這批學(xué)生習(xí)慣于單一知識點的學(xué)習(xí),即得出一個知識點,必須由淺入深反復(fù)進(jìn)行練習(xí),鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結(jié)論,導(dǎo)致錯誤,久之便會失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學(xué)生往往會因第一時間得不到及時的鞏固,對定理本質(zhì)的東西不能很好地理解,在運用時抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識點多不知所措,在云里霧里。二度設(shè)計將切線的判定方法作為第一課時,切線的性質(zhì)定理以及兩個定理的綜合運用作為第二課時,這樣的設(shè)計即是對前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對后面學(xué)習(xí)綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個循序漸進(jìn)、溫過知新的過程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。
二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念
數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學(xué)習(xí)就會輕松。擁有數(shù)感,不僅會對數(shù)學(xué)知識反應(yīng)靈敏,更會在生活中不知不覺運用數(shù)學(xué)思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實證明,學(xué)生有這樣的理解、概括和表達(dá)能力。通過思考得出正確的結(jié)論,這個結(jié)論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。
不足之處:
一、這節(jié)課沒有“高潮”,沒有讓學(xué)生特別興奮激起求知欲的情境,整個教學(xué)過程是在一個平靜、和諧的氛圍中完成的。
二、課的引入太直截了當(dāng),脫離不了應(yīng)試教學(xué)的味道。
三、教學(xué)風(fēng)格的定勢使所授知識不能很合理地與生活實際相聯(lián)系,一定程度上阻礙了學(xué)生解決實際問題能力的發(fā)展。
通過本節(jié)課的教學(xué),我深刻感悟到在教學(xué)實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學(xué)形狀,適應(yīng)現(xiàn)代教育,適應(yīng)現(xiàn)代學(xué)生。課堂教學(xué)中,敢于實驗,舍得放手,盡量培養(yǎng)學(xué)生主體意識,問題讓學(xué)生自己去揭示,方法讓學(xué)生自己去探索,規(guī)律讓學(xué)生自己去發(fā)現(xiàn),知識讓學(xué)生自己去獲得,教師只提供給學(xué)生現(xiàn)實情境、充足的思考時間和活動空間,給學(xué)生表現(xiàn)自我的機會和成功的體驗,培養(yǎng)學(xué)生的自我意識,發(fā)揮學(xué)生的主體作用,來真正實現(xiàn)《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”這一教學(xué)理念。
初中數(shù)學(xué)教案3
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學(xué)模型。進(jìn)一步發(fā)展符號意識。
2.通過一元一次方程的學(xué)習(xí),體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學(xué)重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學(xué)難點
分析實際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學(xué)習(xí)了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨立完成,板演2、4題,板演同學(xué)講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨立思考、回答交流。
本次活動中教師關(guān)注:
。1)學(xué)生能否準(zhǔn)確理解運用等式性質(zhì)和合并同列項求解方程。
。2)學(xué)生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項對方程進(jìn)行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗?zāi)愦蛩阍趺醋觯?/p>
。▽W(xué)生嘗試提問)
學(xué)生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨立回答)
2.設(shè)未知數(shù):設(shè)這個班有x名學(xué)生。
3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的`總數(shù)是一個定值,表示它的兩個等式相等.(學(xué)生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
。1)學(xué)生對列方程解決實際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動中,體驗探究發(fā)現(xiàn)成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學(xué)生講解,獨立完成,板演。
提問:“移項”是注意什么?
學(xué)生:變號。
教師關(guān)注:學(xué)生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四 鞏固提高
1.第91頁練習(xí)(1)(2)
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學(xué)生獨立完成,用實物投影展示部分學(xué)而生練習(xí)。
教師關(guān)注:
1.學(xué)生在計算中可能出現(xiàn)的錯誤。
2.x系數(shù)為分?jǐn)?shù)時,可用乘的辦法,化系數(shù)為1。
3.用實物投影展示學(xué)困生的完成情況,進(jìn)行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。
2、3題的重點是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗解決實際問題,達(dá)到鞏固提高的目的。
活動五
提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?
提問2:本節(jié)課重點利用了什么相等關(guān)系,來列的方程?
教師組織學(xué)生就本節(jié)課所學(xué)知識進(jìn)行小結(jié)。
學(xué)生進(jìn)行總結(jié)歸納、回答交流,相互完善補充。
教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。
引導(dǎo)學(xué)生對本節(jié)所學(xué)知識進(jìn)行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運用。
布置作業(yè):
第93頁第3題
初中數(shù)學(xué)教案4
教學(xué)內(nèi)容:在學(xué)生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關(guān)系。
教學(xué)目標(biāo):1、通過對"撲克"有趣的研究,培養(yǎng)起學(xué)生對生活中平常小事的關(guān)注。
2、調(diào)動學(xué)生豐富的聯(lián)想,養(yǎng)成一種思考的習(xí)慣。
教學(xué)重難點:"撲克"與年月日、季度的聯(lián)系。
教學(xué)過程:
一、談話引入
師:同學(xué)們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?
生:......
。ń處熝a充,引發(fā)學(xué)生的好奇心。)
師: "撲克"還有一種作用,而且與數(shù)學(xué)有關(guān)!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數(shù)
所有牌的和+小王+大王=閏年的天數(shù)
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月
6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。
7、一種花色的'和=一個季度的天數(shù)
一種花色有13張牌=一個季度有13個星期
三、小結(jié)
生活中有很多的數(shù)學(xué),他每時每刻都在我們的身邊出現(xiàn),只是我們大家沒有注意到。請大家都要學(xué)會留心觀察,做生活的有心人。
初中數(shù)學(xué)教案5
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學(xué)們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習(xí)
1、教科書第3頁練習(xí)1、2。
2、補充練習(xí):檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的解。
。1)x-3(x+2)=6+x(x=3,x=-4)
。2)2y(y-1)=3(y=-1,y=2)
。3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。
五、作業(yè)。教科書第3頁,習(xí)題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學(xué)目的
通過天平實驗,讓學(xué)生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。
重點、難點
1、重點:方程的`兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學(xué)過程
一、引入
上一節(jié)課我們學(xué)習(xí)了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學(xué)習(xí)如何將方程變形。
二、新授
讓我們先做個實驗,拿出預(yù)先準(zhǔn)備好的天平和若干砝碼。
測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當(dāng)天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。
如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學(xué)們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。
初中數(shù)學(xué)教案6
4.1二元一次方程
【教學(xué)目標(biāo)】
知識與技能目標(biāo)
1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是
二元一次方程;
2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;
3、會將一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。過程與方法目標(biāo)經(jīng)歷觀察、比較、猜想、驗證等數(shù)學(xué)學(xué)習(xí)活動,培養(yǎng)分析問題的能力和數(shù)學(xué)說理能力;
情感與態(tài)度目標(biāo)
1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進(jìn)一步培養(yǎng)運用類比轉(zhuǎn)化的思想解決問題的能力;
2、通過對實際問題的分析,培養(yǎng)關(guān)注生活,進(jìn)一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識。
【重點、難點】
重點:二元一次方程的概念及二元一次方程的解的概念。
難點1、了解二元一次方程的解的.不唯一性和相關(guān)性。即了解二元一次方程的解有無數(shù)個,
但不是任意的兩個數(shù)是它的解。
2、把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。
【教學(xué)方法與教學(xué)手段】
1、通過創(chuàng)設(shè)問題情境,讓學(xué)生在尋求問題解決的過程中認(rèn)識二元一次方程,了解二元一
次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。
2、通過觀察、思考、交流等活動,激發(fā)學(xué)習(xí)情緒,營造學(xué)習(xí)氣氛,給學(xué)生一定的時間和
空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。
3、通過學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時鞏固所學(xué)知識。
【教學(xué)過程】
一、創(chuàng)設(shè)情境導(dǎo)入新課
1、一個數(shù)的3倍比這個數(shù)大6,這個數(shù)是多少?
2、寫有數(shù)字5的黃卡和寫有數(shù)字2的藍(lán)卡若干張,問黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?
思考:這個問題中,有幾個未知數(shù)?能列一元一次方程求解嗎?
如果設(shè)黃卡取x張,藍(lán)卡取y張,你能列出方程嗎?
3、在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米。如果設(shè)轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?
二、師生互動探索新知
1、推陳出新發(fā)現(xiàn)新知
引導(dǎo)學(xué)生觀察所列的方程:5x?2y?22,2a?3b?20,這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們?nèi)名字嗎?
(板書:二元一次方程)
根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次的方程叫做二元一次方程。)
2、小試牛刀鞏固新知
判斷下列各式是不是二元一次方程
(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y
3、師生互動再探新知
(1)什么是方程的解?(使方程兩邊的值相等的未知數(shù)的值,叫做方程的解。)
(2)你能給二元一次方程的解下一個定義嗎?(使二元一次方程兩邊的值相等的一對未
知數(shù)的值,叫做二元一次方程的一個解。)
?若未知數(shù)設(shè)為x,y,記做x?,若未知數(shù)設(shè)為a,b,記做
?y?
4、再試牛刀檢驗新知
(1)檢驗下列各組數(shù)是不是方程2a?3b?20的解:(學(xué)生感悟二元一次方程解的不唯一性)
a?4a?5a?0a?100
b?3b??1020b??b?6033
(2)你能寫出方程x-y=1的一個解嗎?(再一次讓學(xué)生感悟二元一次方程的解的不唯一性)
5、自我挑戰(zhàn)三探新知
有3張寫有相同數(shù)字的藍(lán)卡和2張寫有相同數(shù)字的黃卡,這五張卡片上的數(shù)字之和為10。設(shè)藍(lán)卡上的數(shù)字為x,黃卡上的數(shù)字為y,根據(jù)題意列方程。3x?2y?10
請找出這個方程的一個解,并寫出你得到這個解的過程。
學(xué)生在解二元一次方程的過程中體驗和了解二元一次方程解的不唯一性。
6、動動筆頭鞏固新知
獨立完成課本第81頁課內(nèi)練習(xí)2
三、你說我說清點收獲
比較一元一次方程和二元一次方程的相同點和不同點
相同點:方程兩邊都是整式
含有未知數(shù)的項的次數(shù)都是一次
如何求一個二元一次方程的解
四、知識鞏固
1、必答題
(1)填空題:若mxy?9x?3yn?1?7是關(guān)于x,y的二元一次方程,則m?n?x?2y?5變形正確的有2
10?xx?10①x?5?4y②x?10?4y③y?④y?44
(3x?7是方程2x?y?15的解。()(2)多選題:方程
y?1
x?7
(4)判斷題:方程2x?y?15的解是。()y?1
2、搶答題
是方程2x?3y?5的一個解,求a的值。(1)已知x??2
y?a
(2)寫出一個解為x?3的二元一次方程。
y?1
3、個人魅力題
寫有數(shù)字5的黃卡和寫有數(shù)字2的藍(lán)卡若干張,問黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?設(shè)黃卡取x張,藍(lán)卡取y張,根據(jù)題意列方程:5x?2y?22你能完成這道題目嗎?
五、布置作業(yè)
初中數(shù)學(xué)教案7
1.知識結(jié)構(gòu)
2.重點和難點分析
重點:本節(jié)的重點是平行四邊形的概念和性質(zhì).雖然平行四邊形的概念在小學(xué)學(xué)過,但對于概念本質(zhì)屬性的理解并不深刻,為了加深學(xué)生對概念的理解,為以后學(xué)習(xí)特殊的平行四邊形打下基礎(chǔ),所以教師不要忽視平行四邊形的概念教學(xué).平行四邊形的性質(zhì)是以后證明四邊形問題的基礎(chǔ),也是學(xué)好全章的關(guān)鍵.尤其是平行四邊形性質(zhì)定理的推論,推論的應(yīng)用有兩個條件:
一個是夾在兩條平行線間;
一個是平行線段,具備這兩個條件才能得出一個結(jié)論平行線段相等,缺少任何一個條件結(jié)論都不成立,這也是學(xué)生容易犯錯的地方,教師要反復(fù)強調(diào).
難點:本節(jié)的難點是平行四邊形性質(zhì)定理的靈活應(yīng)用.為了能熟練的應(yīng)用性質(zhì)定理及其推論,要把性質(zhì)定理和推論的條件和結(jié)論給學(xué)生講清楚,哪幾個條件,決定哪個結(jié)論,如何用數(shù)學(xué)符號表示即書寫格式,都要在講練中反復(fù)強化.
3.教法建議
。1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調(diào)動學(xué)生的積極性.自己設(shè)計了一個動畫,建議老師們用它作為本節(jié)的引入,既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又可以激活學(xué)生的思維.
。2)在生產(chǎn)或生活中,平行四邊形是常見圖形之一,教師可以多給學(xué)生提供一些平行四邊形的圖片,增加學(xué)生的感性認(rèn)識,然后,讓他們自己總結(jié)出平行四邊形的定義,教師最后做總結(jié).平行四邊形是特殊的四邊形,要判定一個四邊形是不是平行四邊形,要判斷兩點:首先是四邊形,然后四邊形的兩組對邊分別平行.平行四邊形的定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質(zhì).
(3)對于教師來說講課固然重要,但講完課后有目的的強化訓(xùn)練也是不可缺少的`,通過做題,幫助學(xué)生更好的理解所講內(nèi)容,也就是我們平時說的要反思回顧,總結(jié)深化.
平行四邊形及其性質(zhì)第一課時
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點
1.使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.
2.掌握平行四邊形的性質(zhì)定理1、2.
3.并能運用這些知識進(jìn)行有關(guān)的證明或計算.
。ǘ┠芰τ(xùn)練點
1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉(zhuǎn)化思想.
2.通過推導(dǎo)平行四邊形的性質(zhì)定理的過程,培養(yǎng)學(xué)生的推導(dǎo)、論證能力和邏輯思維能力.
。ㄈ┑掠凉B透點
通過要求學(xué)生書寫規(guī)范,培養(yǎng)學(xué)生科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng).
。ㄋ模┟烙凉B透點
通過學(xué)習(xí),滲透幾何方法美和幾何語言美及圖形內(nèi)在美和結(jié)構(gòu)美
二、學(xué)法引導(dǎo)
閱讀、思考、講解、分析、轉(zhuǎn)化
三、重點·難點·疑點及解決辦法
1.教學(xué)重點:平行四邊形性質(zhì)定理的應(yīng)用
2.教學(xué)難點:正確理解兩條平行線間的距離的概念和運用性質(zhì)定理2的推論;在計算或證明中綜合應(yīng)用本節(jié)前一章的知識.
3.疑點及解決辦法:關(guān)于性質(zhì)定理2的推論;兩點的距離,點到直線的距離,兩平行直線中間的距離的區(qū)別與聯(lián)系,注重對概念的教學(xué),使學(xué)生深刻理解上述概念,搞清它們之間的關(guān)系;平行四邊形的高有關(guān)問題.
四、課時安排
2課時
五、教具學(xué)具準(zhǔn)備
教具(做兩個全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具
六、師生互動活動設(shè)計
教師復(fù)習(xí)提問,學(xué)習(xí)思考口答;教師設(shè)疑引思,學(xué)生討論分析;師生共同總結(jié)結(jié)論,教師示范講解,學(xué)生達(dá)標(biāo)練習(xí)
第一課時
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么叫做四邊形?什么叫四邊形的一組對邊?
2.四邊形的兩組對邊在位置上有幾種可能?
。教師隨著學(xué)生回答畫出圖1)
圖1
【引入新課】
在四邊形中,我們常見的實用價值最大的就是平行四邊形,如汽車的防護(hù)鏈,無軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質(zhì)呢?這是這節(jié)課研究的主要內(nèi)容(寫出課題).
【講解新課】
1.平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形.
注意:一個四邊形必須具備有兩組對邊分別平行才是平行四邊形,反過來,平行四邊形就一定是有“兩組對邊分別平行”的一個四邊形.因此定義既是平行四邊形的一個判定方法(定義判定法)又是平行四邊形的一個性質(zhì).
2.平行四邊形的表示:平行四邊形用符號“
”表示,如圖1就是平行四邊形
,記作“
”.
align=middle>
圖1
3.平行四邊形的性質(zhì)
講解平行四邊形性質(zhì)前必須使學(xué)生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(zhì)(共性),同時它又是特殊的四邊形,當(dāng)然還有其特性(個性),下面介紹的性質(zhì)就是其特性,這是一般四邊形所不具有的.
平行四邊形性質(zhì)定理1:平行四邊形的對角相等.
平行四邊形性質(zhì)定理2:平行四邊形對邊相等.
。ń叹哂脙蓚全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個定理的方法.如圖2)
圖2如圖3
所以四邊形是平行四邊形,所以.由此得到
推論:夾在兩條平行線間的平行線段相等.
圖3
要注意:必須有兩個平行,即夾兩條平行線段的兩條直線平行,被夾的兩條線段平行,缺一不可,如圖4中的幾種情況都不可以推出圖4
4.平行線間的距離
從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點到另一條直線的距離相等,如圖5.
我們把兩條平行線中一條直線上任意一點到另一條直線的距離,叫做平行線的距離.
圖5
注意:(1)兩相交直線無距離可言.
。2)連結(jié)兩點間的線段的長度叫兩點間的距離,從直線外一點到一條直線的垂線段的長,叫點到直線的距離.兩條平行線中一條直線上任意一點到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區(qū)別與聯(lián)系.
例1 已知:如圖1,
初中數(shù)學(xué)教案8
教學(xué)目標(biāo)
1.了解代數(shù)和的概念,理解有理數(shù)加減法可以互相轉(zhuǎn)化,會進(jìn)行加減混合運算;
2. 通過學(xué)習(xí)一切加減法運算,都可以統(tǒng)一成加法運算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想;
3.通過加法運算練習(xí),培養(yǎng)學(xué)生的運算能力。
教學(xué)建議
。ㄒ唬┲攸c、難點分析
本節(jié)課的重點是依據(jù)運算法則和運算律準(zhǔn)確迅速地進(jìn)行有理數(shù)的加減混合運算,難點是省略加號與括號的代數(shù)和的計算.
由于減法運算可以轉(zhuǎn)化為加法運算,所以加減混合運算實際上就是有理數(shù)的加法運算。了解運算符號和性質(zhì)符號之間的關(guān)系,把任何一個含有有理數(shù)加、減混合運算的算式都看成和式,這是因為有理數(shù)加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.
。ǘ┲R結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1.通過習(xí)題,復(fù)習(xí)、鞏固有理數(shù)的加、減運算以及加減混合運算的法則與技能,講課前教師要認(rèn)真總結(jié)、分析學(xué)生在進(jìn)行有理數(shù)加、減混合運算時常犯的錯誤,以便在這節(jié)課分析習(xí)題時,有意識地幫助學(xué)生改正.
2.關(guān)于“去括號法則”,只要學(xué)生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運算符號理解為數(shù)的性質(zhì)符號,看成省略加號的和式。這時,稱這個和式為代數(shù)和。再例如
-3-4表示-3、-4兩數(shù)的代數(shù)和,
-4+3表示-4、+3兩數(shù)的代數(shù)和,
3+4表示3和+4的代數(shù)和
等。代數(shù)和概念是掌握有理數(shù)運算的一個重要概念,請老師務(wù)必給予充分注意。
4.先把正數(shù)與負(fù)數(shù)分別相加,可以使運算簡便。
5.在交換加數(shù)的位置時,要連同前面的符號一起交換。如
12-5+7 應(yīng)變成 12+7-5,而不能變成12-7+5。
教學(xué)設(shè)計示例一
有理數(shù)的加減混合運算(一)
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點
1.了解:代數(shù)和的概念.
2.理解:有理數(shù)加減法可以互相轉(zhuǎn)化.
3.應(yīng)用:會進(jìn)行加減混合運算.
(二)能力訓(xùn)練點
培養(yǎng)學(xué)生的口頭表達(dá)能力及計算的'準(zhǔn)確能力.
。ㄈ┑掠凉B透點
通過學(xué)習(xí)一切加減法運算,都可以統(tǒng)一成加法運算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想.
。ㄋ模┟烙凉B透點
學(xué)習(xí)了本節(jié)課就知道一切加減法運算都可以統(tǒng)一成加法運算.體現(xiàn)了數(shù)學(xué)的統(tǒng)一美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:采用嘗試指導(dǎo)法,體現(xiàn)學(xué)生主體地位,每一環(huán)節(jié),設(shè)置一定題目進(jìn)行鞏固練
習(xí),步步為營,分散難點,解決關(guān)鍵問題.
2.學(xué)生寫法:練習(xí)→尋找簡單的一般性的方法→練習(xí)鞏固.
三、重點、難點、疑點及解決辦法
1.重點:把加減混合運算算式理解為加法算式.
2.難點:把省略括號和的形式直接按有理數(shù)加法進(jìn)行計算.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片.
六、師生互動活動設(shè)計
教師提出問題學(xué)生練習(xí)討論,總結(jié)歸納加減混合運算的一般步驟,教師出示練習(xí)題,學(xué)生練習(xí)反饋.
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)引入
師:前面我們學(xué)習(xí)了有理數(shù)的加法和減法,同學(xué)們學(xué)得都很好!請同學(xué)們看以下題目: -9+(+6);(-11)-7.
師:(1)讀出這兩個算式.
。2)“+、-”讀作什么?是哪種符號?
“+、-”又讀作什么?是什么符號?
學(xué)生活動:口答教師提出的問題.
師繼續(xù)提問:(1)這兩個題目運算結(jié)果是多少?
。2)(-11)-7這題你根據(jù)什么運算法則計算的?
學(xué)生活動:口答以上兩題(教師訂正).
師小結(jié):減法往往通過轉(zhuǎn)化成加法后來運算.
【教法說明】為了進(jìn)行有理數(shù)的加減混合運算,必須先對有理數(shù)加法,特別是有理數(shù)減法的題目進(jìn)行復(fù)習(xí),為進(jìn)一步學(xué)習(xí)加減混合運算奠定基礎(chǔ).這里特別指出“+、-”有時表示性質(zhì)符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準(zhǔn)備工作.
師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學(xué)習(xí)的有理數(shù)的加減混合運算.(板書課題2.7有理數(shù)的加減混合運算(1))
教學(xué)說明:由復(fù)習(xí)的題目巧妙地填“-”號,就變成了今天將學(xué)的加減混合運算內(nèi)容,使學(xué)生更形象、更深刻地明白了有理數(shù)加減混合運算題目組成.
。ǘ┨剿餍轮,講授新課
1.講評(-9)+(-6)-(-11)-7.
(1)省略括號和的形式
師:看到這個題你想怎樣做?
學(xué)生活動:自己在練習(xí)本上計算.
教師針對學(xué)生所做的方法區(qū)別優(yōu)劣.
【教法說明】題目出示后,教師不急于自己講評,而是讓學(xué)生嘗試,給了學(xué)生一個展示自己的機會,這時,有的學(xué)生可能是按從左到右的順序運算,有的同學(xué)可能是先把減法都轉(zhuǎn)化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學(xué)生自己就會尋找到簡單的、一般性的方法.
師:我們對此類題目經(jīng)常采用先把減法轉(zhuǎn)化為加法,這時就成了-9,+6,+11,-7的和,加號通常可以省略,括號也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
。剑9+6+11-7.
提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??
學(xué)生活動:先自己練習(xí)嘗試用兩種讀法讀,口答(教師糾正).
【教法說明】教師根據(jù)學(xué)生所做的方法,及時指出最具代表性的方法來給學(xué)生指明方向,在把算式寫成省略括號代數(shù)和的形式后,通過讓學(xué)生練習(xí)兩種讀法,可以加深對此算式的理解,以此來訓(xùn)練學(xué)生的觀察能力及口頭表達(dá)能力.
鞏固練習(xí):(出示投影1)
1.把下列算式寫成省略括號和的形式,并把結(jié)果用兩種讀法讀出來.
。1)(+9)-(+10)+(-2)-(-8)+3;
。2)+()-()-().
2.判斷
式子-7+1-5-9的正確讀法是().
A.負(fù)7、正1、負(fù)5、負(fù)9;
B.減7、加1、減5、減9;
C.負(fù)7、加1、負(fù)5、減9;
D.負(fù)7、加1、減5、減9;
學(xué)生活動:1題兩個學(xué)生板演,兩個學(xué)生用兩種讀法讀出結(jié)果,其他同學(xué)自行演練,然后同桌讀出互相糾正,2題搶答.
【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉(zhuǎn)化成加法運算寫成代數(shù)和的形式,這里特別注意了代數(shù)和形式的兩種讀法.
2.用加法運算律計算出結(jié)果
師:既然算式能看成幾個數(shù)的和,我們可以運用加法的運算律進(jìn)行計算,通常同號兩數(shù)放在一起分別相加.
。9+6+11-7
。剑9-7+6+11.
學(xué)生活動:按教師要求口答并讀出結(jié)果.
鞏固練習(xí):(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
學(xué)生活動:討論后回答.
【教法說明】學(xué)生運用加法交換律時,很可能產(chǎn)生“-9+7+11-6”這樣的錯誤,教師先讓學(xué)生自己去做,然后糾正,又做一組鞏固練習(xí),使學(xué)生牢固掌握運用加法運算律把同號數(shù)放在一起時,一定要連同前面的符號一起交換這一知識點.
師:-9-7+6+11怎樣計算?
學(xué)生活動:口答
。郯鍟
。9-7+6+11
。剑16+17
=1
鞏固練習(xí):(出示投影3)
1.計算(1)-1+2-3-4+5;
。2).
2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;
。2).
學(xué)生活動:四個同學(xué)板演,其他同學(xué)在練習(xí)本上做.
【教法說明】針對一道例題分成三部分,每一部分都有一組相應(yīng)的鞏固練習(xí),這樣每一步學(xué)生都掌握得較牢固,這時教師一定要總結(jié)有理數(shù)加減混合運算的方法,使分散的知識有相對的集中.
師小結(jié):有理數(shù)加減法混合運算的題目的步驟為:
1.減法轉(zhuǎn)化成加法;
2.省略加號括號;
3.運用加法交換律使同號兩數(shù)分別相加;
4.按有理數(shù)加法法則計算.
。ㄈ┓答伨毩(xí)
。ǔ鍪就队4)
計算:(1)12-(-18)+(-7)-15;
。2).
學(xué)生活動:可采用同桌互相測驗的方法,以達(dá)到糾正錯誤的目的.
【教法說明】這兩個題目是本節(jié)課的重點.采用測驗的方式來達(dá)到及時反饋.
。ㄋ模w納小結(jié)
師:1.怎樣做加減混合運算題目?
2.省略括號和的形式的兩種讀法?
學(xué)生活動:口答.
【教法說明】小結(jié)不是教師單純的總結(jié),而是讓學(xué)生參與回答,在學(xué)生思考回答的過程中將本節(jié)的重點知識納入知識系統(tǒng).
八、隨堂練習(xí)
1.把下列各式寫成省略括號的和的形式
。1)(-5)+(+7)-(-3)-(+1);
。2)10+(-8)-(+18)-(-5)+(+6).
2.說出式子-3+5-6+1的兩種讀法.
3.計算
。1)0-10-(-8)+(-2);
。2)-4.5+1.8-6.5+3-4;
。3).
九、布置作業(yè)
。ㄒ唬┍刈鲱}:1.計算:(1)-8+12-16-23;
。2);
。3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
。ǘ┻x做題:(1)當(dāng)時,,,哪個最大,哪個最?
。2)當(dāng)時,,,哪個最大,哪個最。
十、板書設(shè)計
初中數(shù)學(xué)教案9
教學(xué)目標(biāo):
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識到許多實際問題可以用數(shù)學(xué)方法解決。
教學(xué)重點:歸納一元次方程的概念
教學(xué)難點:感受方程作為刻畫現(xiàn)實世界有效模型的意義.
教學(xué)過程:
一、情景導(dǎo)入:
我能猜出你們的年齡,相信嗎?
只要任何一個同學(xué)回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學(xué)生說出結(jié)果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學(xué)生討論并回答
二、知識探究:
1、方程的教學(xué)(投影演示)
小彬和小明也在進(jìn)行猜年齡游戲,我們來看一看。
找出這道題中的等量關(guān)系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、 判斷下列式子是不是方程?
。1)X+2=3(是)(2)X+3Y=6(是)
。3)3M-6(不是)(4)1+2=3(不是)
。5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?
你能找出題中的等量關(guān)系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統(tǒng)計數(shù)據(jù)(20xx年3月28日新華社公布)
截至20xx年11月1日0時,全國每10萬人中具有大學(xué)文化程度的人數(shù)為3611人,比1990年7月1日0時增長了153.94%
1990年6月底每10萬人中約有多少人具有大學(xué)文化程度?情景三:西湖中學(xué)的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的.長和寬分別是多少米?
下面是剛才根據(jù)幾道情景題所列的方程,分析下列方程有何共同點?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個方程中,只含有一個未知數(shù)X(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。
問:大家剛才都已經(jīng)自己列出了方程,那個同學(xué)能夠說一下你是怎樣列出方程的,列方程應(yīng)該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關(guān)系(2)設(shè)未知數(shù)(3)列方程
四、隨堂練習(xí)
1、投影趣味習(xí)題,
2、做一做
下面有兩道題,請選做一題。
。1)、請根據(jù)方程2X+3=21自己設(shè)計一道有實際背景的應(yīng)用題。
。2)、發(fā)揮你的想象,用自己的年齡編一道應(yīng)用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學(xué)到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
數(shù)學(xué)教案-你今年幾歲了搜集整理
初中數(shù)學(xué)教案10
教學(xué)目標(biāo):
(一)知識與技能
理解單項式及單項式系數(shù)、次數(shù)的概念;能準(zhǔn)確迅速地確定一個單項式的系數(shù)和次數(shù);會用含字母的式子表示實際問題中的數(shù)量關(guān)系。
(二)過程與方法
1.在經(jīng)歷用字母表示數(shù)量關(guān)系的過程中,發(fā)展符號感;
2. 通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識和合作交流能力
(三)情感態(tài)度價值觀
1.通過豐富多彩的現(xiàn)實情景,讓學(xué)生經(jīng)歷從具體問題中抽象出數(shù)量關(guān)系,在解決問題中了解數(shù)學(xué)的價值,增長“用數(shù)學(xué)”的信心.
2.通過用含字母的式子描述現(xiàn)實世界中的數(shù)量關(guān)系,認(rèn)識到它是解決實際問題的重要數(shù)學(xué)工具之一。
教學(xué)重、難點:
重點:單項式及單項式系數(shù)、次數(shù)的概念。
難點:單項式次數(shù)的概念;單項式的書寫格式及注意點。
教學(xué)方法:
引導(dǎo)——探究式
在感性材料的基礎(chǔ)上,學(xué)生自主探究現(xiàn)實情景中用字母表示數(shù)的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導(dǎo)學(xué)生共同抽象、概括單項式及相關(guān)的概念.
教具準(zhǔn)備:
多媒體課件、小黑板.
教學(xué)過程:
一、 創(chuàng)設(shè)情境,引入新課
出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向?qū)W生介紹青藏鐵路所創(chuàng)造的歷史之最。
情境問題:
青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達(dá)到120千米/時,請根據(jù)這些數(shù)據(jù)回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
設(shè)計意圖:從學(xué)生熟悉的情境出發(fā),創(chuàng)設(shè)情境,讓學(xué)生感受青藏鐵路的偉大成就,激發(fā)
愛國主義情感,得到一次情感教育。
解:根據(jù)路程、速度、時間之間的關(guān)系:路程=速度×?xí)r間
2小時行駛的路程是:100×2=200(千米)
3小時行駛的路程是:100×3=300(千米)
t小時行駛的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出現(xiàn)乘號,通常將乘號寫作“ · ”或省略不寫。
如:100×a可以寫成100a或100a。
代數(shù)式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數(shù)和表示數(shù)的字母連接起來的式子。
代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關(guān)系,本節(jié)我們就來學(xué)習(xí)最基本也是最重要的一類代數(shù)式整式。
設(shè)計意圖:從學(xué)生已有的數(shù)學(xué)經(jīng)驗:路程=速度×?xí)r間出發(fā),建立新舊知識之間的聯(lián)系
讓學(xué)生歷一個從一般到特殊再到一般的認(rèn)識過程,發(fā)展學(xué)生的認(rèn)知觀念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。
1、邊長為a的正方體的表面積是__,體積是__.
2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。
3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。
4、數(shù)n的相反數(shù)是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它們有什么共同的特點?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
單項式:數(shù)與字母、字母與字母的乘積。
注意:單獨的一個數(shù)或字母也是單項式。
設(shè)計意圖:從熟悉的實際背景出發(fā),充分讓學(xué)生自己觀察、自己發(fā)現(xiàn)、自己描述,進(jìn)行自主學(xué)習(xí)和合作交流,獲得數(shù)學(xué)猜想和數(shù)學(xué)經(jīng)驗,滿足學(xué)生的表現(xiàn)欲和探究欲,使學(xué)生學(xué)得輕松愉快,充分體現(xiàn)課堂教學(xué)的開放性。
火眼金睛
下列各代數(shù)式中哪些是單項式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)
(6)
(7)3a+2b (8)xy2
設(shè)計意圖:加強學(xué)生對不同形式的單項式的直觀認(rèn)識。
解剖單項式
系數(shù):單項式中的數(shù)字因數(shù)。
如:-3x的系數(shù)是 ,-ab的系數(shù)是 , 的系數(shù)是 。
次數(shù):一個單項式中的所有字母的指數(shù)的和。
如:-3x的次數(shù)是 ,ab的次數(shù)是 。
小試身手
單項式 2a 2 -1.2h xy2 -t2 -32x2y
系數(shù)
次數(shù)
設(shè)計意圖:了解學(xué)生對單項式系數(shù)、次數(shù)的概念是否理解,找出存在的問題,從而進(jìn)一步鞏固概念。
單項式的注意點:
(1)數(shù)與字母相乘時,數(shù)應(yīng)寫在字母的___,且乘號可_________;
(2)帶分?jǐn)?shù)作為系數(shù)時,應(yīng)改寫成_______的形式;
(3)式子中若出現(xiàn)相除時,應(yīng)把除號寫成____的形式;
(4)把“1”或“-1”作為項的系數(shù)時,“1”可以__不寫。
行家看門道
、1x ②-1x
③a×3 ④a÷2
、 ⑥m的系數(shù)為1,次數(shù)為0
、 的系數(shù)為2,次數(shù)為2
設(shè)計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學(xué)生進(jìn)一步明確注意點。
三、例題講解,鞏固新知
例1:用單項式填空,并指出它們的系數(shù)和次數(shù):
(1)每包書有12冊,n包書有 冊;
(2)底邊長為a,高為h的三角形的面積 ;
(3)一個長方體的長和寬都是a,高是h,它的體積是 ;
(4)一臺電視機原價a元,現(xiàn)按原價的9折出售,這臺電視機現(xiàn)在的售價
為 元;
(5)一個長方形的長0.9,寬是a,這個長方形的面積是 .
解:(1)12n,它的系數(shù)是12,次數(shù)是1
(2) ,它的系數(shù)是 , 次數(shù)是2;
(3)a2h,它的系數(shù)是1,次數(shù)是3;
(4)0.9a,它的系數(shù)是0.9,次數(shù)是1;
(5)0.9a,它的系數(shù)是0.9,次數(shù)是1。
設(shè)計意圖:學(xué)生能用單項式表示簡單的實際問題中的數(shù)量關(guān)系,并進(jìn)一步鞏固單項式的系數(shù)、次數(shù)的概念。
試一試
你還能賦予0.9a一個含義嗎?
設(shè)計意圖:同一個式子可以表示不同的含義,通過這個例子讓學(xué)生進(jìn)一步體會式子更具有一般性,而且發(fā)散學(xué)生思維。
大膽嘗試
寫出一個單項式,使它的系數(shù)是2,次數(shù)是3.
設(shè)計意圖:充分發(fā)揮學(xué)生的想象力,讓每一個學(xué)生都有獲得成功的體驗,為不同程度的學(xué)生一個展示自我的機會,激發(fā)他們的學(xué)習(xí)興趣。
四、拓展提高
嘗試應(yīng)用
用單項式填空,并指出它們的`系數(shù)和次數(shù):
(1)全校學(xué)生總數(shù)是x,其中女生占總數(shù)48%,則女生人數(shù)是 ,男生人數(shù)是 ;
(2)一輛長途汽車從楊柳村出發(fā),3小時后到達(dá)相距s千米的溪河鎮(zhèn),這輛長途汽車的平均速度是 ;
(3)產(chǎn)量由m千克增長10%,就達(dá)到 千克;
設(shè)計意圖:讓學(xué)生感受單項式在實際生活中的應(yīng)用,進(jìn)一步掌握單項式及單項式系數(shù)、次數(shù)的概念。
能力提升
1、已知-xay是關(guān)于x、y的三次單項式,那么a= ,b= .
2、若-ax2yb+1是關(guān)于x、y的五次單項式,且系數(shù)為-3,則a= ,b= .
設(shè)計意圖:照顧學(xué)有余力的學(xué)生,拓展學(xué)生思維,讓學(xué)生體會跳一跳、摘桃子的樂趣。
五、小結(jié):
本節(jié)課你感受到了嗎?
生活中處處有數(shù)學(xué)
本節(jié)課我們學(xué)了什么?你能說說你的收獲嗎?
1、單項式的概念: 數(shù)與字母、字母與字母的乘積。
2、單項式的系數(shù)、次數(shù)的概念。
系數(shù):單項中的數(shù)字因數(shù);
次數(shù):單項中所有字母的指數(shù)和。
3、會用單項式表示實際問題中的數(shù)量關(guān)系,注意列式時式子要規(guī)范書寫。
設(shè)計意圖:通過回顧和反思,讓學(xué)生看到自己的進(jìn)步,激勵學(xué)生,使學(xué)生相信自己在今后的學(xué)習(xí)中不斷進(jìn)步,不斷積累數(shù)學(xué)活動經(jīng)驗,促進(jìn)學(xué)生形成良好的心理品質(zhì)。
結(jié)束寄語
悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發(fā)現(xiàn)!
設(shè)計意圖:這是對學(xué)生的激勵也是對學(xué)生的一種期盼,可以增進(jìn)師生間的情感交流。
六、板書設(shè)計
2.1 整式
單項式概念 探究 例1 多
單項式的系數(shù)概念 觀察交流 嘗試應(yīng)用 媒
單項式的次數(shù)概念 能力提升 體
七、作業(yè):
1.作業(yè)本(必做)。
2. 請下面圖片設(shè)計一個故事情境,要求其中包含的數(shù)量關(guān)系能夠用單項式表示,并且指出它們的系數(shù)和次數(shù)(選做)。
設(shè)計意圖:布置分層作業(yè),既讓學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高。讓學(xué)生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,活躍學(xué)生思維,使學(xué)生能夠透徹理解知識,同時培養(yǎng)同學(xué)之間的競爭意識。
八、設(shè)計理念:
本節(jié)課是研究整式的起始課,它是進(jìn)一步學(xué)習(xí)多項式的基礎(chǔ),因此對單項式有關(guān)概念的理解和掌握情況,將直接影響到后續(xù)學(xué)習(xí)。為突出重點,突破難點,教學(xué)中要加強直觀性,即為學(xué)生提供足夠的感知材料,豐富學(xué)生的感性認(rèn)識,幫助學(xué)生認(rèn)識概念,同時也要注重分析,亦即在剖析單項式結(jié)構(gòu)時,借助反例練習(xí),抓住概念易混淆處和判斷易出錯處,強化認(rèn)識,幫助學(xué)生理解單項式系數(shù)、次數(shù),為進(jìn)一步學(xué)習(xí)新知做好鋪墊。
針對七年級學(xué)生學(xué)習(xí)熱情高,但觀察、分析、認(rèn)識問題能力較弱的特點,教學(xué)時將提供大量感性材料,以啟發(fā)引導(dǎo)為主,同時輔之以討論、練習(xí)、合作交流等學(xué)習(xí)活動,達(dá)到掌握知識的目的,并逐步培養(yǎng)起學(xué)生觀察、分析、抽象、概括的能力,同時注重培養(yǎng)學(xué)生由感性認(rèn)識上升到理性認(rèn)識,為進(jìn)一步學(xué)習(xí)同類項打下堅實的基礎(chǔ)。
初中數(shù)學(xué)教案11
一、 教學(xué)目標(biāo)
1、 知識與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運算。
2、 能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、 教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進(jìn)行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
三、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
(1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負(fù)方向。
① 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
、 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
。-2) ×(-3)=
。2)學(xué)生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
。-)×(-)=( ) 同號得
、诜e的絕對值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、 運用法則計算,鞏固法則。
(1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的`關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
。3)學(xué)生做練習(xí),教師評析。
。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進(jìn)一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
初中數(shù)學(xué)教案12
教學(xué)目標(biāo)
1.使學(xué)生正確理解的意義,掌握的三要素;
2.使學(xué)生學(xué)會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;
3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.
教學(xué)重點和難點
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應(yīng)關(guān)系.
課堂教學(xué)過程 設(shè)計
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1.小學(xué)里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認(rèn)為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容——.
二、講授新課
讓學(xué)生觀察掛圖——放大的溫度計,同時教師給予語言指導(dǎo):利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計的液面的.不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點表示正數(shù)、負(fù)數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負(fù)方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負(fù));
3.選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎(chǔ)上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進(jìn)而提問學(xué)生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習(xí)
例1 畫一個,并在上畫出表示下列各數(shù)的點:
例2 指出上A,B,C,D,E各點分別表示什么數(shù).
課堂練習(xí)
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?
最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)
指導(dǎo)學(xué)生閱讀教材后指出:是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點建立了對應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學(xué)們能掌握的三要素,正確地畫出,在此還要提醒同學(xué)們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數(shù)學(xué)教案13
一元一次不等式組
教學(xué)目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;
3、體驗數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實際問題中的`價值。
教學(xué)難點
正確分析實際問題中的不等關(guān)系,列出不等式組。
知識重點
建立不等式組解實際問題的數(shù)學(xué)模型。
探究實際問題
出示教科書第145頁例2(略)
問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?
(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結(jié)
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?
在討論或議論的基礎(chǔ)上老師揭示:
步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。
初中數(shù)學(xué)教案14
、俳Y(jié)合你對一元一次方程中的一次的理解,說一說你對一次函數(shù)中的“一次”的理解. ②k可以是怎樣的數(shù)?
、勰阍鯓诱J(rèn)識一次函數(shù)和正比例函數(shù)的關(guān)系?
一個常數(shù)b的和即 Y=kx+b 定義:一般地,形
如
Y=kx+b( k,b 是常數(shù),k≠0 )的.函數(shù),叫做一次函數(shù), 當(dāng)
b=0時,
Y=kx+b即Y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)。
例1、下列函數(shù)中,Y是X的一次函數(shù)的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
學(xué)生獨立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關(guān)系式,并判
解釋與應(yīng)用
斷,y是否為x的一次函數(shù)?是否為正比例函數(shù)?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關(guān)系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關(guān)系:③一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關(guān)系式
初中數(shù)學(xué)教案15
一、教學(xué)案例的特點
1、案例與論文的區(qū)別
從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。
從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。
2、案例與教案、教學(xué)設(shè)計的區(qū)別
教案和教學(xué)設(shè)計都是事先設(shè)想的教學(xué)思路,是對準(zhǔn)備實施的教學(xué)措施的簡要說明;教學(xué)案例則是對已經(jīng)發(fā)生的教學(xué)過程的反映。一個寫在教之前,一個寫在教之后;一個是預(yù)期達(dá)到什么目標(biāo),一個是結(jié)果達(dá)到什么水平。教學(xué)設(shè)計不宜于交流,教學(xué)案例適宜于交流。
3、案例與教學(xué)實錄的區(qū)別
案例與教學(xué)實錄的體例比較接近,它們都是對教學(xué)情景的描述,但教學(xué)實錄是有聞必錄,而案例則是有所選擇的,教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷或理性思考)。
4、教學(xué)案例的特點是
——真實性:案例必須是在課堂教學(xué)中真實發(fā)生的事件;
——典型性:必須是包括特殊情境和典型案例問題的故事;
——濃縮性:必須多角度地呈現(xiàn)問題,提供足夠的信息;
——啟發(fā)性:必須是經(jīng)過研究,能夠引起討論,提供分析和反思。
二、數(shù)學(xué)案例的結(jié)構(gòu)要素
從文章結(jié)構(gòu)上看,數(shù)學(xué)案例一般包含以下幾個基本的元素。
(1)背景。案例需要向讀者交代故事發(fā)生的有關(guān)情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學(xué)校還是普通學(xué)校,是一個重點班級還是普通班級,是有經(jīng)驗的優(yōu)秀教師還是年青的新教師執(zhí)教,是經(jīng)過準(zhǔn)備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的`發(fā)生是否有什么特別的原因或條件。
(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉(zhuǎn)變學(xué)困生,還是強調(diào)怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學(xué)生的獨立學(xué)習(xí)情況,等等。或者是一個什么樣的數(shù)學(xué)任務(wù)解決過程和方法,在課程標(biāo)準(zhǔn)中數(shù)學(xué)任務(wù)認(rèn)知水平的要求怎么樣,在課堂教學(xué)中數(shù)學(xué)任務(wù)認(rèn)知水平的發(fā)展怎么樣等等。動筆前都要有一個比較明確的想法。比如學(xué)校開展研究性學(xué)習(xí)活動,不同的研究課題、研究小組、研究階段,會面臨不同的問題、情境、經(jīng)歷,都有自己的獨特性。寫作時應(yīng)該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。
(3)情節(jié)。有了主題,寫作時就不會有聞必錄,而要是對原始材料進(jìn)行篩選。首先需要教師對課堂教學(xué)中師生雙方(外顯的和內(nèi)隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內(nèi)容,把關(guān)鍵性的細(xì)節(jié)寫清楚。比如介紹教師如何指導(dǎo)學(xué)生掌握學(xué)習(xí)數(shù)學(xué)的方法,就要把學(xué)生怎么從“不會”到“會”的轉(zhuǎn)折過程,要把學(xué)習(xí)發(fā)生發(fā)展過程的細(xì)節(jié)寫清楚,要把教師觀察到的學(xué)生學(xué)習(xí)行為,學(xué)習(xí)行為反映的學(xué)生思想、情感、態(tài)度寫清楚,或者把小組合作學(xué)習(xí)的突出情況寫清楚,或者把個別學(xué)生獨立學(xué)習(xí)的典型行為寫清楚。不能把“任務(wù)”布置了一番,把“方法”介紹了一番,說到“任務(wù)”的完成過程,說到“掌握”的程度就一筆帶過了。
(4)結(jié)果。一般來說,教案和教學(xué)設(shè)計只有設(shè)想的措施而沒有實施的結(jié)果,教學(xué)實錄通常也只記錄教學(xué)的過程而不介紹教學(xué)的效果;而案例則不僅要說明教學(xué)的思路、描述教學(xué)的過程,還要交代學(xué)生學(xué)習(xí)的結(jié)果,即這種教學(xué)措施的即時效果,包括學(xué)生的反映和教師的感受等。讀者知道了結(jié)果,將有助于加深對整個過程的內(nèi)涵的了解。
(5)反思。對于案例所反映的主題和內(nèi)容,包括教育教學(xué)指導(dǎo)思想、過程、結(jié)果,對其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎(chǔ)上的議論,可以進(jìn)一步揭示事件的意義和價值。比如同樣是一個學(xué)困生轉(zhuǎn)化的事例,我們可以從社會學(xué)、教育學(xué)、心理學(xué)、學(xué)習(xí)理論等不同的理論角度切入,揭示成功的原因和科學(xué)的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。
三、初中數(shù)學(xué)教學(xué)案例主題的選擇
新課程理念下的初中數(shù)學(xué)教學(xué)案例,可從以下六方面選擇主題:
(1)體現(xiàn)讓學(xué)生動手實踐、自主探究、合作交流的教學(xué)方式;
(2)體現(xiàn)教師幫助學(xué)生在自主探究、合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識和技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗;
(3)體現(xiàn)讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程,采用“問題情境——建立模型——解釋、應(yīng)用與拓展”的模式教學(xué)的成功經(jīng)驗;
(4)體現(xiàn)數(shù)學(xué)與信息技術(shù)整合的教學(xué)方法;
(5)體現(xiàn)教師在教學(xué)過程中的組織者、引導(dǎo)者與合作者的作用;
(6)體現(xiàn)教學(xué)中對學(xué)生情感、態(tài)度的關(guān)注和評價,以及怎樣幫助不同的人在數(shù)學(xué)上獲得不同的發(fā)展,等等。
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案08-12
初中數(shù)學(xué)教案02-21
初中數(shù)學(xué)教案[經(jīng)典]02-21
人教版初中數(shù)學(xué)教案07-17
初中數(shù)學(xué)教案模板11-02
角初中數(shù)學(xué)教案12-30
初中數(shù)學(xué)教案【熱】11-17
【熱】初中數(shù)學(xué)教案11-15
【熱門】初中數(shù)學(xué)教案11-18
初中數(shù)學(xué)教案【精】11-19