一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

七年級初中數(shù)學教案

時間:2022-12-04 11:41:58 初中數(shù)學教案 我要投稿

七年級初中數(shù)學教案(6篇)

  作為一位杰出的老師,時常要開展教案準備工作,借助教案可以有效提升自己的教學能力。那么教案應(yīng)該怎么寫才合適呢?下面是小編整理的七年級初中數(shù)學教案,僅供參考,大家一起來看看吧。

七年級初中數(shù)學教案(6篇)

七年級初中數(shù)學教案1

  問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?

  這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的`方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?

  同學們動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  這正是我們本章要解決的問題。

  三、鞏固練習

  1、教科書第3頁練習1、2。

  2、補充練習:檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的解。

 。1)x-3(x+2)=6+x(x=3,x=-4)

 。2)2y(y-1)=3(y=-1,y=2)

 。3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小結(jié)。本節(jié)課我們主要學習了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W習體會。

  五、作業(yè)。教科書第3頁,習題6。1第1、3題。

  解一元一次方程

  1、方程的簡單變形

  教學目的

  通過天平實驗,讓學生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。

  重點、難點

  1、重點:方程的兩種變形。

  2、難點:由具體實例抽象出方程的兩種變形。

  教學過程

  一、引入

  上一節(jié)課我們學習了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。

  二、新授

  讓我們先做個實驗,拿出預(yù)先準備好的天平和若干砝碼。

  測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。

  如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。

  如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?

  讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。

七年級初中數(shù)學教案2

  一元一次不等式組

  教學目標

  1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;

  2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

  3、體驗數(shù)學學習的`樂趣,感受一元一次不等式組在解決實際問題中的價值。

  教學難點

  正確分析實際問題中的不等關(guān)系,列出不等式組。

  知識重點

  建立不等式組解實際問題的數(shù)學模型。

  探究實際問題

  出示教科書第145頁例2(略)

  問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?

  (3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結(jié)

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?

  在討論或議論的基礎(chǔ)上老師揭示:

  步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。

七年級初中數(shù)學教案3

  教學目標

  1. 使學生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;

  2. 初步培養(yǎng)學生觀察、分析和抽象思維的能力.

  教學重點和難點

  重點:列代數(shù)式.

  難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.

  課堂教學過程設(shè)計

  一、從學生原有的認知結(jié)構(gòu)提出問題

  1?用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;( -7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應(yīng)用引導的方法啟發(fā)學生解答本題)

  2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習中的問題一樣,這一點同學們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學習這個問題?

  二、講授新課

  例1 用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?

  解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本題應(yīng)由學生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2 用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的 與乙數(shù)的 的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?

  解:設(shè)甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應(yīng)由學生口答,教師板書完成)

  此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序?

  例3 用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時,可提出以下問題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n; (2)5m+2?

  (這個例子直接為以后讓學生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)?

  例4 設(shè)字母a表示一個數(shù),用代數(shù)式表示:

  (1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;

  (3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?

  分析:啟發(fā)學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通過本例的講解,應(yīng)使學生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學生分析問題和解決問題的能力?)

  例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?

  分析本題時,可提出如下問題:

  (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (3)通過上述問題的解答結(jié)果,你能找出其中的.規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個; (2)( m)m個?

  三、課堂練習

  1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、師生共同小結(jié)

  首先,請學生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?

  其次,教師在學生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(代數(shù)式的形式不唯一);

  (2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;

  (3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學習列方程解應(yīng)用題做準備?要求學生一定要牢固掌握?

  五、作業(yè)

  1?用代數(shù)式表示:

  (1)體校里男生人數(shù)占學生總數(shù)的60%,女生人數(shù)是a,學生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學生人數(shù)之比是1∶10,教練人數(shù)是多?

  2?已知一個長方形的周長是24厘米,一邊是a厘米,

  求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

  學法探究

  已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

  分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.

  當圓環(huán)為三個的時候,如圖:

  此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

  解:

  =99a+b(cm)

七年級初中數(shù)學教案4

  平行線的判定(1)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展推理能力和有條理表達能力.

  2.掌握直線平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學思想

  學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.

  一、探索直線平行的條件

  平行線的判定方法1:

  二、練一練1、判斷題

  1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯角也相等.( )

  2.兩條直線被第三條直線所截,如果內(nèi)錯角互補,那么同旁內(nèi)角相等.( )

  2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、選擇題

  1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右圖,由圖和已知條件,下列判斷中正確的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關(guān)系,并說明理由.

  五、作業(yè)課本15頁-16頁練習的1、2、3、

  5.2.2平行線的判定(2)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學習目標

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空

  間觀念,推理能力和有條理表達能力.

  毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

  學習重點:直線平行的條件的應(yīng)用.

  學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.

  一、學習過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習:

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題) (第2題)

  2.如圖,一個合格的`變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是( )

  A.因為∠1=∠4,所以DE∥AB

  B.因為∠2=∠3,所以AB∥EC

  C.因為∠5=∠A,所以AB∥DE

  D.因為∠ADE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答題.

  1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

七年級初中數(shù)學教案5

  學習目標:

  1、理解平行線的意義兩條直線的兩種位置關(guān)系;

  2、理解并掌握平行公理及其推論的內(nèi)容;

  3、會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;

  學習重點:

  探索和掌握平行公理及其推論、

  學習難點:

  對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)

  一、學習過程:預(yù)習提問

  兩條直線相交有幾個交點?

  平面內(nèi)兩條直線的位置關(guān)系除相交外,還有哪些呢?

 。ㄒ唬┊嬈叫芯

  1、工具:直尺、三角板

  2、方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據(jù)此方法練習畫平行線:

  已知:直線a,點B,點C、

  (1)過點B畫直線a的平行線,能畫幾條?

 。2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

  (二)平行公理及推論

  1、思考:上圖中,①過點B畫直線a的平行線,能畫條;

 、谶^點C畫直線a的平行線,能畫條;

 、勰惝嫷闹本有什么位置關(guān)系?。

 、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P、若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

 。ㄒ唬┻x擇題:

  1、下列推理正確的'是()

  A、因為a//d,b//c,所以c//d B、因為a//c,b//d,所以c//d

  C、因為a//b,a//c,所以b//c D、因為a//b,d//c,所以a//c

  2、在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為()

  A、0個B、1個C、2個D、3個

  (二)填空題:

  1、在同一平面內(nèi),與已知直線L平行的直線有條,而經(jīng)過L外一點,與已知直線L平行的直線有且只有條。

  2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應(yīng)的位置關(guān)系:

 。1)L1與L2沒有公共點,則L1與L2;

 。2)L1與L2有且只有一個公共點,則L1與L2;

  (3)L1與L2有兩個公共點,則L1與L2 。

  3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關(guān)系是。

  4、平面內(nèi)有a 、b、c三條直線,則它們的交點個數(shù)可能是個。

  三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2、試說明∠BDG+∠B=180°、

七年級初中數(shù)學教案6

  教學目標

  1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;

  2, 了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;

  3, 體驗分類是數(shù)學上的常用處理問題的方法。

  教學難點 正確理解分類的標準和按照一定的標準進行分類

  知識重點 正確理解有理數(shù)的概念

  教學過程(師生活動) 設(shè)計理念

  探索新知 在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).

  問題1:觀察黑板上的9個數(shù),并給它們進行分類.

  學生思考討論和交流分類的情況.

  學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導和鼓勵.

  例如,

  對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù),,.…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))

  通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.

  按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來.

  “統(tǒng)稱”是指“合起來總的名稱”的意思.

  試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

  學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

  練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.

  2,教科書第10頁練習.

  此練習中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.

  把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號.

  思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?

  也可以教師說出一些數(shù),讓學生進行判斷。

  集合的概念不必深入展開。

  創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?

  教學時,要讓學生總結(jié)已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇,逐步得到如下的分類表?/p>

  有理數(shù) 這個分類可視學生的程度確定是否有必要教學。

  應(yīng)使學生了解分類的標準不一樣時,分類的結(jié)果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

  小結(jié)與作業(yè)

  課堂小結(jié) 到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。

  本課作業(yè)

  1, 必做題:教科書第18頁習題1.2第1題

  2, 教師自行準備

  本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)

  1,本課在引人了負數(shù)后對所學過的數(shù)按照一定的.標準進行分類,提出了有理數(shù)的概念.分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應(yīng)引起足夠的重視.關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

  2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。

  3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學生的情況進行。

【七年級初中數(shù)學教案】相關(guān)文章:

初中七年級的數(shù)學教案02-02

七年級初中數(shù)學教案12-02

初中七年級數(shù)學教案12-30

初中七年級下冊數(shù)學教案01-13

七年級初中數(shù)學教案6篇12-03

初中七年級數(shù)學教案5篇02-27

初中七年級數(shù)學教案(5篇)03-02

初中七年級數(shù)學教案8篇03-14

初中七年級數(shù)學教案(8篇)03-15