一级毛片免费不卡在线视频,国产日批视频免费在线观看,菠萝菠萝蜜在线视频免费视频,欧美日韩亚洲无线码在线观看,久久精品这里精品,国产成人综合手机在线播放,色噜噜狠狠狠综合曰曰曰,琪琪视频

推薦文檔列表

數(shù)學(xué)教案-圓、扇形、弓形的面積

時(shí)間:2021-09-29 18:47:39 初中數(shù)學(xué)教案 我要投稿

數(shù)學(xué)教案-圓、扇形、弓形的面積

圓、扇形、弓形的面積(一)

數(shù)學(xué)教案-圓、扇形、弓形的面積

教學(xué)目標(biāo) :

1、掌握扇形面積公式的推導(dǎo)過程,初步運(yùn)用扇形面積公式進(jìn)行一些有關(guān)計(jì)算;

2、通過扇形面積公式的推導(dǎo),培養(yǎng)學(xué)生抽象、理解、概括、歸納能力和遷移能力;

3、在扇形面積公式的推導(dǎo)和例題教學(xué)過程 中,滲透“從特殊到一般,再由一般到特殊”的辯證思想.

教學(xué)重點(diǎn):扇形面積公式的導(dǎo)出及應(yīng)用.

教學(xué)難點(diǎn) :對(duì)圖形的分析.

教學(xué)活動(dòng)設(shè)計(jì):

(一)復(fù)習(xí)(圓面積)

已知⊙O半徑為R,⊙O的面積S是多少?

 S=πR2

我們?cè)谇竺娣e時(shí)往往只需要求出圓的一部分面積,如圖中陰影圖形的面積.為了更好研究這樣的圖形引出一個(gè)概念.

扇形:一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫做扇形.

提出新問題:已知⊙O半徑為R,求圓心角n°的扇形的面積.

(二)遷移方法、探究新問題、歸納結(jié)論

1、遷移方法

教師引導(dǎo)學(xué)生遷移推導(dǎo)弧長(zhǎng)公式的方法步驟:

(1)圓周長(zhǎng)C=2πR;

(2)1°圓心角所對(duì)弧長(zhǎng)=;

(3)n°圓心角所對(duì)的弧長(zhǎng)是1°圓心角所對(duì)的弧長(zhǎng)的n倍;

(4)n°圓心角所對(duì)弧長(zhǎng)=.

歸納結(jié)論:若設(shè)⊙O半徑為R, n°圓心角所對(duì)弧長(zhǎng)l,則   (弧長(zhǎng)公式)

2、探究新問題

教師組織學(xué)生對(duì)比研究:

(1)圓面積S=πR2;

(2)圓心角為1°的扇形的面積=;

(3)圓心角為n°的扇形的面積是圓心角為1°的扇形的面積n倍;

(4)圓心角為n°的扇形的面積=.

歸納結(jié)論:若設(shè)⊙O半徑為R,圓心角為n°的扇形的面積S扇形,則

S扇形= (扇形面積公式)

(三)理解公式

教師引導(dǎo)學(xué)生理解:

(1)在應(yīng)用扇形的面積公式S扇形=進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;

(2)公式可以理解記憶(即按照上面推導(dǎo)過程記憶);

提出問題:扇形的面積公式與弧長(zhǎng)公式有聯(lián)系嗎?(教師組織學(xué)生探討)

S扇形=lR

想一想:這個(gè)公式與什么公式類似?(教師引導(dǎo)學(xué)生進(jìn)行,或小組協(xié)作研究)

與三角形的面積公式類似,只要把扇形看成一個(gè)曲邊三角形,把弧長(zhǎng)l看作底,R看作高就行了.這樣對(duì)比,幫助學(xué)生記憶公式.實(shí)際上,把扇形的弧分得越來越小,作經(jīng)過各分點(diǎn)的半徑,并順次連結(jié)各分點(diǎn),得到越來越多的小三角形,那么扇形的面積就是這些小三角形面積和的極限.要讓學(xué)生在理解的基礎(chǔ)上記住公式.

(四)應(yīng)用

練習(xí):1、已知扇形的圓心角為120°,半徑為2,則這個(gè)扇形的面積,S扇=____.

2、已知扇形面積為 ,圓心角為120°,則這個(gè)扇形的半徑R=____.

3、已知半徑為2的扇形,面積為 ,則它的圓心角的度數(shù)=____.

4、已知半徑為2cm的扇形,其弧長(zhǎng)為 ,則這個(gè)扇形的面積,S扇=____.

5、已知半徑為2的扇形,面積為 ,則這個(gè)扇形的弧長(zhǎng)=____.

( ,2,120°, , )

例1、已知正三角形的邊長(zhǎng)為a,求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.

學(xué)生獨(dú)立完成,對(duì)基礎(chǔ)較差的學(xué)生教師指導(dǎo)

(1)怎樣求圓環(huán)的面積?

(2)如果設(shè)外接圓的半徑為R,內(nèi)切圓的半徑為r, R、r與已知邊長(zhǎng)a有什么聯(lián)系?

解:設(shè)正三角形的外接圓、內(nèi)切圓的半徑分別為R,r,面積為S1、S2.

S=.

∵ ,∴S=.

說明:要注意整體代入.

對(duì)于教材中的例2,可以采用典型例題中第4題,充分讓學(xué)生探究.

課堂練習(xí):教材P181練習(xí)中2、4題.

(五)總結(jié)

知識(shí):扇形及扇形面積公式S扇形= ,S扇形=lR.

方法能力:遷移能力,對(duì)比方法;計(jì)算能力的培養(yǎng).

(六)作業(yè)   教材P181練習(xí)1、3;P187中10.

圓、扇形、弓形的面積(二)

教學(xué)目標(biāo) :

1、在復(fù)習(xí)鞏固圓面積、扇形面積的計(jì)算的基礎(chǔ)上,會(huì)計(jì)算弓形面積;

2、培養(yǎng)學(xué)生觀察、理解能力,綜合運(yùn)用知識(shí)分析問題和解決問題的能力;

3、通過面積問題實(shí)際應(yīng)用題的解決,向?qū)W生滲透理論聯(lián)系實(shí)際的觀點(diǎn).

教學(xué)重點(diǎn):扇形面積公式的導(dǎo)出及應(yīng)用.

教學(xué)難點(diǎn) :對(duì)圖形的分解和組合、實(shí)際問題數(shù)學(xué)模型的建立.

教學(xué)活動(dòng)設(shè)計(jì):

(一)概念與認(rèn)識(shí)

弓形:由弦及其所對(duì)的弧組成的圖形叫做弓形.

弦AB把圓分成兩部分,這兩部分都是弓形.弓形是一個(gè)最簡(jiǎn)單的組合圖形之一.

(二)弓形的面積

提出問題:怎樣求弓形的面積呢?

學(xué)生以小組的形式研究,交流歸納出結(jié)論:

 

(1)當(dāng)弓形的弧小于半圓時(shí),弓形的面積等于扇形面積與三角形面積的差;

 

(2)當(dāng)弓形的弧大于半圓時(shí),它的面積等于扇形面積與三角的面積的和;

(3)當(dāng)弓形弧是半圓時(shí),它的面積是圓面積的一半.

理解:如果組成弓形的弧是半圓,則此弓形面積是圓面積的一半;如果組成弓形的弧是劣弧則它的面積等于以此劣弧為弧的扇形面積減去三角形的面積;如果組成弓形的弧是優(yōu)弧,則它的面積等于以此優(yōu)弧為弧的扇形面積加上三角形的面積.也就是說:要計(jì)算弓形的面積,首先觀察它的弧屬于半圓?劣。?jī)?yōu)?只有對(duì)它分解正確才能保證計(jì)算結(jié)果的正確.

(三)應(yīng)用與反思

練習(xí):

(1)如果弓形的弧所對(duì)的圓心角為60°,弓形的弦長(zhǎng)為a,那么這個(gè)弓形的面積等于_______;

(2)如果弓形的弧所對(duì)的圓心角為300°,弓形的弦長(zhǎng)為a,那么這個(gè)弓形的面積等于_______.

(學(xué)生獨(dú)立完成,鞏固新知識(shí))

例3、水平放著的圓柱形排水管的截面半徑是0.6m,其中水面高是0.3m.求截面上有水的弓形的面積.(精確到0.01m2)

教師引導(dǎo)學(xué)生并滲透數(shù)學(xué)建模思想,分析:

(1)“水平放著的圓柱形排水管的截面半徑是0.6m”為你提供了什么數(shù)學(xué)信息?

(2)求截面上有水的弓形的面積為你提供什么信息?

(3)扇形、三角形、弓形是什么關(guān)系,選擇什么公式計(jì)算?

學(xué)生完成解題過程,并歸納三角形OAB的面積的求解方法.

反思:①要注重題目的信息,處理信息;②歸納三角形OAB的面積的求解方法,根據(jù)條件特征,靈活應(yīng)用公式;③弓形的面積可以選用圖形分解法,將它轉(zhuǎn)化為扇形與三角形的和或差來解決.

例4、已知:⊙O的半徑為R,直徑AB⊥CD,以B為圓心,以BC為半徑作 .求 與 圍成的新月牙形ACED的面積S.

解:∵ ,

有∵ ,

, ,

∴ .

組織學(xué)生反思解題方法:圖形的分解與組合;公式的靈活應(yīng)用.

(四)總結(jié)

1、弓形面積的計(jì)算:首先看弓形弧是半圓、優(yōu)弧還是劣弧,從而選擇分解方案;

2、應(yīng)用弓形面積解決實(shí)際問題;

3、分解簡(jiǎn)單組合圖形為規(guī)則圓形的和與差.

(五)作業(yè)   教材P183練習(xí)2;P188中12.

圓、扇形、弓形的面積(三)

教學(xué)目標(biāo) :

1、掌握簡(jiǎn)單組合圖形分解和面積的求法;

2、進(jìn)一步培養(yǎng)學(xué)生的觀察能力、發(fā)散思維能力和綜合運(yùn)用知識(shí)分析問題、解決問題的能力;

3、滲透圖形的外在美和內(nèi)在關(guān)系.

教學(xué)重點(diǎn):簡(jiǎn)單組合圖形的分解.

教學(xué)難點(diǎn) :對(duì)圖形的分解和組合.

教學(xué)活動(dòng)設(shè)計(jì):

(一)知識(shí)回顧

復(fù)習(xí)提問:1、圓面積公式是什么?2、扇形面積公式是什么?如何選擇公式?3、當(dāng)弓形的弧是半圓時(shí),其面積等于什么?4、當(dāng)弓形的弧是劣弧時(shí),其面積怎樣求?5、當(dāng)弓形的弧是優(yōu)弧時(shí),其面積怎樣求?

(二)簡(jiǎn)單圖形的分解和組合

1、圖形的組合

 

讓學(xué)生認(rèn)識(shí)圖形,并體驗(yàn)圖形的外在美,激發(fā)學(xué)生的研究興趣,促進(jìn)學(xué)生的創(chuàng)造力.

2、提出問題:正方形的邊長(zhǎng)為a,以各邊為直徑,在正方形內(nèi)畫半圓,求所圍成的圖形(陰影部分)的面積.

以小組的形式協(xié)作研究,班內(nèi)交流思想和方法,教師組織.給學(xué)生發(fā)展思維的空間,充分發(fā)揮學(xué)生的主體作用.

歸納交流結(jié)論:

方案1.S陰=S正方形-4S空白.

方案2、S陰=4S瓣=4 (S半圓-S△AOB)

=2S圓-4S△AOB=2S圓-S正方形ABCD

方案3、S陰=4S瓣=4 (S半圓-S正方形AEOF)

=2S圓-4S正方形AEOF =2S圓-S正方形ABCD

方案4、S陰=4 S半圓-S正方形ABCD

……………

反思:①對(duì)圖形的分解不同,解題的難易程度不同,解題中要認(rèn)真觀察圖形,追求最美的解法;②圖形的美也存在著內(nèi)在的規(guī)律.

練習(xí)1:如圖,圓的半徑為r,分別以圓周上三個(gè)等分點(diǎn)為圓心,以r為半徑畫圓弧,則陰影部分面積是多少?

分析:連結(jié)OA,陰影部分可以看成由六個(gè)相同的弓形AmO組成.

解:連結(jié)AO,設(shè)P為其中一個(gè)三等分點(diǎn),

連結(jié)PA、PO,則△POA是等邊三角形.

說明:① 圖形的分解與重新組合是重要方法;②本題還可以用下面方法求:若連結(jié)AB,用六個(gè)弓形APB的面積減去⊙O面積,也可得到陰影部分的面積.

練習(xí)2:教材P185練習(xí)第1題

例5、 已知⊙O的半徑為R.

(1)求⊙O的內(nèi)接正三角形、正六邊形、正十二邊形的周長(zhǎng)與⊙O直徑(2R)的比值;

(2)求⊙O的內(nèi)接正三角形、正六邊形、正十二邊形的面積與圓面積的比值(保留兩位小數(shù)).

例5的計(jì)算量較大,老師引導(dǎo)學(xué)生完成.并進(jìn)一步鞏固正多邊形的計(jì)算知識(shí),提高學(xué)生的計(jì)算能力.

說明:從例5(1)可以看出:正多邊形的周長(zhǎng)與它的外接圓直徑的比值,與直徑的大小無關(guān).實(shí)際上,古代數(shù)學(xué)家就是用逐次倍增正多邊形的邊數(shù),使正多邊形的周長(zhǎng)趨近于圓的周長(zhǎng),從而求得了π的各種近似值.從(2)可以看出,增加圓內(nèi)接正多邊形的邊數(shù),可使它的面積趨近于圓的面積

(三)總結(jié)

1、簡(jiǎn)單組合圖形的分解;

2、進(jìn)一步鞏固了正多邊形的計(jì)算以,鞏固了圓周長(zhǎng)、弧長(zhǎng)、圓面積、扇形面積、弓形面積的計(jì)算.

3、進(jìn)一步理解了正多邊形和圓的關(guān)系定理.

(四)作業(yè)    教材P185練習(xí)2、3;P187中8、11.

探究活動(dòng)

四瓣花形

在邊長(zhǎng)為1的正方形中分別以四個(gè)頂點(diǎn)為圓心,以l為半徑畫弧所交成的“四瓣梅花”圖形,如圖 (1)所示.

再分別以四邊中點(diǎn)為圓心,以相鄰的兩邊中點(diǎn)連線為半徑畫弧而交成的“花形”,如圖 (12)所示.

探討:(1)兩圖中的圓弧均被互分為三等份.

(2)兩朵“花”是相似圖形.

(3)試求兩“花”面積

提示:分析與解  (1)如圖21所示,連結(jié)PD、PC,由PD=PC=DC知,∠PDC=60°.

從而,∠ADP=30°.

同理∠CDQ=30°.故∠ADP=∠CDQ=30°,即,P、Q是AC弧的三等分點(diǎn).

由對(duì)稱性知,四段弧均被三等分.

如果證明了結(jié)論(2),則圖 (12)也得相同結(jié)論.

(2)如圖(22)所示,連結(jié)E、F、G、H所得的正方形EFGH內(nèi)的花形恰為圖 (1)的縮影.顯然兩“花”是相似圖形;其相似比是AB ﹕EF =﹕1.

(3)花形的面積為: , .

數(shù)學(xué)教案-圓、扇形、弓形的面積